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ABSTRACT 

Conductive textiles, originally used for electromagnetic shielding purposes, have 

recently been utilized in body area network applications as fabric antennas and 

distributed sensors used to document and analyze kinematic movement, health vital 

signs, or haptic interactions. This thesis investigates the potential for using conductive 

textiles as a distributed sensor and integrated communication system component for 

use in combat wound detection, sensing, and localization applications. The goal of 

these proof-of-concept experiments is to provide a basis for robust system development 

which can expedite and direct the medical response team in the field. The combat 

wound detection system would have the capability of predicting the presence and 

location of cuts or tears within the conductive fabric as a realization of bullet or shrapnel 

penetration. Collected data, along with health vitals gathered from additional sensors, 

will then be wirelessly transmitted via integrated communication system components, to 

the appropriate medical response team.  

A distributed sensing method is developed to accurately predict the location and 

presence of textile penetrations. This method employs a Wheatstone bridge and 

multiplexing circuitry to probe a resistor network. Localized changes in resistance 

illustrate the presence and approximate location of cuts within the conductive textile. 

Additionally, this thesis builds upon manually defined textile antennas presented in 

literature by employing a laser cutting system to accurately define antenna dimensions. 

With this technique, a variety of antennas are developed for various purposes including 

large data transmission as would be expected from multi-sensor system integration. The 
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fabrication technique also illustrates multilayer antenna development. To confirm 

simulation results, electrical parameters are extracted using a single-frequency 

resonance method. These parameters are used in the simulation and design of single-

element and two-element wideband slot antennas as well as the design of a wideband 

monopole antenna. The monopole antenna is introduced to an indoor ultra-wideband 

(UWB) localization system to illustrate the capability of pinpointing the wearer of textile 

antennas for localization applications. A cavity-backed dog-bone slot antenna is 

developed to establish the ability to incorporate conductive vias by sewing conductive 

thread. This technique can be easily extrapolated to the development of textile substrate 

integrated waveguide (SIW) technologies. 
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CHAPTER I: Introduction and Motivation 

 Security is a vital part of today’s world. Oak Ridge National Laboratory, the 

largest Department of Energy laboratory, is charged with enhancing global, national, 

and homeland security. Within this charge lies the Nuclear Security and Isotope 

Technology Division under the leadership of Dr. Alan Icenhour. The purpose of this 

division is to design and implement science and technology solutions for numerous 

areas, including but not limited to nonproliferation, safeguards and threat reduction. 

Within this division lies the Safeguards and Security Technology Group in which the 

research in this thesis was conducted in collaboration with the University of Tennessee, 

Knoxville. This group, headed by Chris Pickett, is focused on developing and applying 

safeguards and security technologies to improve the effectiveness and efficiency of 

proliferation prevention systems to enhance U.S. national security. 

 The Safeguards and Security Technology Group possesses a number of state-

of-the-art laboratories geared towards accomplishing the goals mentioned above. These 

include the Containment and Surveillance Systems Laboratory, the Safeguards 

Laboratory, the Radiation Inspection Laboratory and the Security Science Field 

Laboratory. Each of these labs meets the goals of the group in different ways. The 

Containment and Surveillance Systems Laboratory, for example, implements tracking 

systems, develops and deploys security systems, creates active tamper indicating 

devices and performs vulnerability analysis on these devices, works with unattended 

remote monitoring systems employing both wired and wireless sensors. The 

Safeguards Laboratory has programs with training and international outreach which 
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teach nondestructive assay measurement techniques, equipment evaluation standards, 

and integrated safeguards methodologies. The research performed in the Radiation 

Inspection laboratory is geared towards the detection of radiation at ports and roadways 

with advanced portal monitoring systems. Lastly, the Security Science Field Laboratory 

evaluates various security technologies in both indoor and outdoor environments in 

addition to system design, test and evaluation. 

 My work at Oak Ridge National Laboratory was focused within the Containment 

and Surveillance Systems Laboratory. This lab has many capabilities as mentioned 

above and conducts various research and development projects to meet missions within 

the Department of Energy. Some notable recent advancements made in this regard 

under the direction of Chris Pickett and other personnel within the Safeguards and 

Security Technology group (e.g., Michael Kuhn, Nathan Rowe, Brad Stinson, Jim 

Younkin) include: an analysis of radio-frequency devices for safeguards [1], 

employment of ultra wideband systems for active tagging and tracking in secure 

environments [2], use of inductive communication technology as a means to inventory 

and manage weapons and related assets [3], and development of an automated vault 

inventory system for special assets which can be continuously  monitored [4]. Each of 

these research solutions stems from the overarching charge of the Safeguards and 

Security Technology Group. My research as a graduate student within this group dealt 

with evaluating conductive textile materials for novel applications including nuclear 

safeguards, containment and surveillance, and combat wound detection systems.  
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Introduction to Combat Wound Detection 

Combat wound detection systems are of paramount importance in ensuring 

maximal safety and minimized medical response time for deployed soldiers. The 

development of these systems, ideally, will integrate traditional health vital 

measurements with bullet penetration localization schemes to provide the maximum 

amount of useful information to medical staff. This information can be appropriately 

characterized to ensure a quick, effective medical response. A number of crucial 

requirements surround the development of combat wound detection systems. First, they 

must be lightweight, flexible and durable so that they do not hamper the field deployed 

soldiers. Second, they must combine multiple metrics to provide, with reasonable 

certainty, information as to the health and safety of the soldier. Lastly, these systems 

must reliably transmit the collected data to the appropriate medical staff. 

 Numerous options exist for the development of such systems. Each has its own 

attributes that make it worthy of selection. However, key components also rule out the 

use of some technologies. The most obvious solution is to employ a variety of off-the-

shelf wireless sensors to measure vital signs such as pH, blood pressure, heart rate, 

temperature and respiration rate as well as accelerometers and pressure sensors to 

measure motion, proximity and haptic interactions. The drawback to this solution is the 

difficulty in combining each of these different platforms to a single, easy-to-implement 

solution for field deployment. It would be a nuisance to require a soldier to wear a 

number of different sensors to measure each of these vital signs mentioned.  
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Instead, integration into a unified platform promises success. A potential medium 

to harbor this integration is the use of conductive textiles. These textiles offer a flexible, 

lightweight and durable solution to combat wound detection systems as they allow for 

easy incorporation of fabric-based sensors as well as discrete sensors. Numerous 

sensor topologies have been previously developed and can be implemented within 

these textile systems to measure a number of biometrics. These include a wireless 

blood pressure monitoring system [5], a wireless oximeter 6], an integrated cardiac, tilt, 

respiratory, and temperature monitoring system [7], a wireless electroencephalography 

(EEG) system [8], a wireless electrocardiography (ECG) system [9], and a wireless 

gamma radiation detector [10]. System development for sensor integration has also 

been an area of recent development. FIT system is a wearable armband that includes a 

3-D accelerometer, temperature sensor, sweat sensor, and radiated heat sensor [11] 

while the Basis Band is a wearable watch that includes a heart rate sensor, a galvanic 

sweat sensor, a 3-D accelerometer, and temperature sensor [12].  A visualization of 

some sensors being incorporated into a soldier’s standard issue protective vest is 

illustrated in Figure 1. The electrical connections established between each of these 

sensors and a data acquisition unit can be achieved through the conductive textile.  

In addition to measuring and tracking a number of health vital signs, combat 

wound detection systems are also required to accurately detect the presence of bullet 

penetration. Knowing the time of impact, the number of penetrations and the location of 

penetrations in addition to numerous vital signs will allow medical staff to quickly and 

accurately respond to field deployed soldiers. This response may come in to form of 
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Figure 1: A variety of sensors for integration into  a combat wound detection system. 

 
 
 
accurate instructions for field dressing a wound or by sending a rapid response medical 

team to perform injury countermeasures. Conductive textiles can also be implemented 

to meet this requirement of combat wound detection systems. Using these textiles, a 

fabric-based sensor can be developed to accurately detect and localize the penetration. 

An example of this sensing capability is illustrated in Figure 2. 

Conductive Textile Fabrication 

A wide variety of conductive textiles exist for a number of different applications. Among 

these are the use of conductive textiles for shielding, sensing, communication systems 

and computation applications. Each of these applications poses different requirements 

for the conductive textile. Shielding, for example, requires the textile to be flexible, 

durable and easily configurable to enclose various shapes. Additionally, these textiles  
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Figure 2: Illustration of fabric-based sensor to de tect and localize cuts and tears achieved with 
conductive textile material.  

 

must offer sufficient radio frequency shielding so as to block the penetration of 

unwanted electromagnetic interference. Sensing methods, on the other hand, require 

conductive textiles capable of producing detectable data for specific uses. In other 

cases, such as in communication systems, highly conductive textiles are necessary to 

ensure accurate data transmission is achieved with minimal losses. Computation, too, 

requires conductive textile properties to provide accurate methods for performed the 

computation analysis.  

In each of the applications listed, different conductive textile properties are 

required for successful implementation. These various textiles can be created through a 

variety of methods stemming from two distinct ideologies. Conductive textiles can be 

made of woven metal threads or can be formed through a process known as 

metallization. In comparison, the metallized textiles are much more durable and flexible 
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than their metal thread counterparts. Depending on the weave pattern, the metal thread 

in non-metallized textiles can sever and render the entire system useless. This would 

likely occur if the same thread was run throughout the entire cloth. Zysset [13] presents 

a technique whereby individual metal threads can be woven in specific patterns such 

that electronic functionality can be achieved at the yarn level. Conductive thread is 

woven in the warp direction and plastic fibers in the weft direction of an existing fabric. 

The intersection of conductive thread and plastic fibers represents contact points that 

can be used as the insertion point for sensors and other integrated circuits. Depending 

on the type of conductive thread and plastic fibers used, the circuits can be attached 

with conductive epoxy or solder. An example of Zysset’s fabric structure is shown in 

Figure 3. 

 

 
Figure 3: Fabric structure with woven conductive th reads for body area network applications [13]. 
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Metallization Process 

In addition to weaving individual threads into a fabric, conductive textiles can be 

created through a process known as metallization. Metallization is a process in which a 

fabric or some other solid can be coated with a thin layer of metal. Different materials 

can be coated through various metallization techniques. Metallization of fabric can occur 

on two scales; either the individual thread can be metallized prior to being woven or a 

finished fabric can be metalized to coat the entire surface as one.  

Four metallization techniques are common: vacuum deposition, ion plating, 

electroplating, and electroless plating. The most common techniques used to create 

conductive textiles are electroplating, also known as electrodeposition, and electroless 

plating. Electroplating is a process that utilizes electrical current to deposit a layer of 

metal particles on a material. Metals such as alloys, chromium, copper, gold, nickel and 

silver can be deposited on fabric surfaces by using the electroplating process. An 

example electroplating system is shown in Figure 4. In this system, the sample material 

is connected to the cathode while the anode contains the metal to be deposited on the 

fabric. In the presence of an electrical current, metallic ions travel through the plating 

solution and are deposited on the fabric material. [14] 

A thorough description of the other common metallization technique, electroless 

plating, is presented in [14]. Electroless plating is “a non-galvanic technique that 

involves several simultaneous chemical reactions in an aqueous solution occurring 

without the use of external electric current” [14]. Ionization occurs when hydrogen is 

released by a reducing agent and produces a negative charge on the surface of the 
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material following oxidization. This method enables the metal coating of non-conductive 

textile materials. A uniform metallic layer can be achieved with this method due to the 

lack of an electric field. This technique is commonly used to bond a metallic nickel base 

layer to a textile prior to recoating with a more conductive metal such as silver or gold. 

Little and his team [15] show the capability of metallizing Kevlar fibers with gold using 

an electroplating method as well as an electroless method. They encountered 

inconsistencies when comparing these two methods. These differences are determined 

to be likely results of challenges arising from the original nickel coating achieved with 

the electroless plating technique rather than the electroplating method. [15] Many 

commercially available conductive textiles are created through this or a similar 

metallization process.  

One challenge with conductive textile fabrication is ensuring an even coating of  

 

 
Figure 4: Electroplating (electrodeposition) techni que that could be used to metallize a fabric [4]. 
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the fabric. This is a crucial parameter as uniformity of the metallization becomes 

paramount in sensor and communication system component design. Figure 5 depicts a 

conductive textile sample under intense magnification. This image shows the capability 

of the metallization process to evenly coat all parts of the textile providing uniform 

conductivity throughout.  

Many vendors market conductive textiles. A few of these vendors include 

LessEMF.com, Swift Textile Metalizing, LLC, Marktek, Inc., Shieldex, and Metal Textiles 

Corporation. Each of these companies mainly advertises the use of conductive textiles 

for shielding applications. A number of potential conductive textiles can be found in the 

conductive textile tables in the Appendix of this thesis. These tables compare various 

properties of conductive textiles based on vendor such as, fabric type, fabric thickness, 

metallic coating and shielding effectiveness. Figure 6 illustrates a wide variety of 

conductive textiles that can be purchased. 

 

 

 
Figure 5: 322x Magnification of Conductive Textile.  [16] 
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Figure 6: Numerous varieties of conductive textiles . [17] 

 

Organization of the Thesis 

Combat wound detection systems rely on two main pillars for success. First, data 

must be accurately and quickly obtained to discern whether medical staff should be 

alerted to a situation. Second, in the event of a situation, the appropriate health vital 

data needs to be accurately transmitted to medical staff so they can make an educated 

decision on how to proceed. To meet these requirements, this thesis further investigates 

the implementation of conductive textiles in both sensing and communication systems. 

Chapter II discusses the current state-of-the-art in the use of conductive textiles for both 

sensing and communication applications. The subsequent sections of this thesis 

combat the challenges determined by the literature review of Chapter II. Chapter III 

discusses the materials used during the completion of this research. This includes the 
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textile samples as well as the electrical characterization of the samples and subsequent 

details of the fabrication process. Chapter IV follows the development of accurate 

simulation models and experimental testing of fabric-based sensors for use in combat 

wound detection scenarios. This application looks for changes in localized resistance of 

the conductive fabric to determine the location of penetration within a textile sample. 

Simulation models were developed using MATLAB to aid in the characterization of 

penetration indicating events due to a change in resistance. These models portray the 

conductive fabric as a large grid of discrete resistors. Penetration is detectable by 

measuring and recording the change in point-to-point resistance of this grid. The 

location of penetration is indicated through a graphical representation of the textile 

surface. The results of the simulation models are discussed in detail and compared with 

measured results from two generations of the distributed fabric-based sensing system. 

The first-generation sensing system verifies the accuracy of the simulation model by 

collecting experimental data using a LabView data acquisition system. The results 

suggest good agreement and show cause for further, more robust development of this 

sensing technique. A second-generation penetration detection system is developed and 

presented with experimental verification. 

 Chapter V analyzes the alternate applications for conductive textiles presented in 

this thesis; a medium for discrete sensor integration as well as employment as a 

component in a communication system. A number of sensors are described which can 

be easily implemented using the capabilities of conductive textiles. RF characterization 

of fabric samples is performed using resonance techniques at a single frequency to 
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determine the electrical properties. Using this characterization, antennas are designed, 

fabricated using laser-precision and tested based on design specifications. Via 

implementation in textiles is explored and the potential for textile substrate integrated 

waveguides is discussed.  The accuracy and potential use for the textile antennas is 

verified through experimentation. Chapter VI discusses the potential for future work 

entailing the use of conductive textiles for combat wound detection and localization 

systems and Chapter VII offers conclusions. 

 



www.manaraa.com

14 
 

 
 

CHAPTER II: Literature Review 

The applications of conductive textiles have traditionally been in the areas of 

shielding, sensing, communication and computation. For use in combat wound 

detection systems, this thesis investigates the potential for using conductive textiles as 

both a sensing device as well as a communication system component. This chapter 

attempts to corral the copious research performed in this expanding area and delineate 

between research utilizing the textiles as a sensing device and that which employs them 

as a signal transmission medium through the development of textile antennas. These 

antenna components can be connected to a larger communication system to transmit 

various sensor data to a storage hub or to a medical team for review.  

Conductive Textile Sensor Development 

Sensing applications using conductive textiles have been an area of great 

research in recent years as sensor technology and the electronics industry moves 

towards flexible, low-cost and lightweight products. Wearable electronics make up a 

significant and growing segment of the world-wide electronics industry. As such, these 

wearable systems are increasingly being employed in biomedical research 

environments to constantly and accurately measure the vital signs of patients. Various 

sensors integrated into a common unit are commonly referred to as body area 

networks. The early advancements in the developments of body area networks through 

2005 are thoroughly discussed in [18]. Carpi and De Rossi describe the early 

advancements made in electroactive polymer (EAP)-based sensors, actuators, 
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electronic components, and power sources. Each of these components is designed with 

the intention of integration into wearable devices such as a body area network. The goal 

of body area networks is to improve the overall quality of life by maintaining supervision 

of health and fitness levels through applications such as bio-monitoring, rehabilitation, 

telemedicine, ergonomics and sports medicine [19-24]. In many cases, sensors to track 

the status of these metrics can be directly integrated into the garments. These sensors, 

as mentioned above, include heart rate monitors, accelerometers, and communication 

devices. Kifayat [25] employs body area network technology to assist therapists in 

physiotherapy exercises. A data acquisition logger constantly uploads data during the 

exercise, which allows the therapist to better mold the recovery program to the 

individual patient. Other sensor networks make use of telemonitoring to alert personnel 

when drugs are to be administrated [26]. Conductive textiles can also be employed to 

detect and measure deformation [27], proximity and haptic interactions [28] and motion 

[18, 29].  

There are many opportunities in which conductive textiles can be applied to other 

body area network research. Carpi [18] points out that garments capable of detecting 

strain and stress, such as piezoresistive materials, would enable the tracking of posture 

and gestures. This would allow for precise analysis of kinematic movements. Similarly, 

these e-textiles would permit real-time monitoring of health vitals for patients. This strive 

towards disease prevention is critical in the diagnosis and treatment of cardiovascular 

diseases [20, 24]. Rehabilitation requirements can also be assessed and met through 

the use of body area network technology. As suggested by Binkley [20], body area 
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networks could be equipped with actuators in addition to sensors. These actuators 

would allow for successful monitoring and completion of rehabilitation programs. 

In a similar application of conductive textiles, Tognetti [27] characterizes a novel 

data glove that makes use of conductive elastomers to detect hand movement. The 

glove, pictured in Figure 7, has the ability to sense these kinematic movements through 

the piezoresistive effect engaged by the conductive elastomer under deformation. 

Piezoresistivity is an inherent property in certain materials that forces the electrical 

resistance of a material to change when an external force is applied. Twenty sensors 

are distributed over the hand in each conductive elastomer thread. The respective 

piezoresistive changes in each of these sensors allowed Tognetti [27] to formulate 

algorithms to help localize sensor deformation thereby mapping the movement of the 

hand.  

 

 

 
Figure 7: Sensing glove created by Tognetti et al. [27] 
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The uniqueness in Tognetti’s approach [27] is that the sensors are printed 

directly to the fabric glove using the original glove material. This technique, however, 

can also be a disadvantage. Wijesiriwardana [28] comments on the potential 

disadvantages of a similar printing technique. He investigates a printing technique to 

print electro-conductive materials onto textiles using piezoresistive coatings and sewing 

conductive thread directly on the textile substrate. They claim that:  

the disadvantages involving these approaches are the aging effects of the 
electrodes constructed with piezoresistive materials [polypyrrole (PPY)/metal-
loaded rubber, such carbon-loaded rubber (CLR)], damage with washing and 
variable performance with deformation (due to time dependencies of these 
materials and poor repeatability), false alarms due to capacitance change caused 
by parasitic deformations, and calibration difficulties where absolute readings are 
necessary (change of capacitance due to humidity temperature, aging, and 
washing. [28] 

 
This suggests that, over time, the sensing effectiveness of the glove may deteriorate 

due to the aging effects of the conductive material. Instead of using these techniques, 

Wijesiriwardana [28] integrates the electrodes directly in to the substrate textile by 

utilizing electrodes with inherent conductivity. This conductivity derives from “inherently 

conductive polymers and multifilament metallic fibers” [28]. To detect proximity and 

touch, Wijesiriwardana et al. employ both capacitive and resistive measurement 

techniques. In their sensor example, shown in Figure 8, you can see that the conductive 

fibers are sewn directly in to the nonconductive dielectric textile. Using two layers of 

electrodes allows for sensing as a result of the variations in displacement. Utilizing the 

piezoresistive coatings described in [30], touch sensing is also achieved. 

Wade and Asada [29] created a cable-free wearable sensor system using DC 

powerline technology in a conductive fabric vest. They envision their vest to be applied  
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Figure 8: Conductive electrodes used by Wijesiriwar dana et al. for touch and proximity-sensing 

applications [28]. 

 
 

to health monitoring and rehabilitation applications. To reduce the bulkiness of wearable 

networks, Wade combines DC powerline communication (PLC) technology with 

intelligent sensors. This combination offers a “comfortable, flexible and washable 

monitoring network” [29]. Their sensor vest consists of three primary components. 

These are the sensor nodes, the ‘central’ node which constitutes for power and 

information processing, and two conductive sheets which act as a medium for power 

and data transmission. To test the reliability of signal transmission across their vest, 

Wade connected an accelerometer to the upper arm of the vest. The output of the 

accelerometer was modulated and transmitted along the vest to the opposite shoulder. 

The signal received agrees well with the transmitted signal. This suggests reliability in 

data transmission and therefore allows for investigation of textile antenna development 

with these sensing systems. 
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Body area networks (BAN) are among the leading applications for utilizing 

conductive textiles as a sensing and communicating mechanism. Many products have 

been developed to monitor health and fitness levels of wearers as well as other 

information. Some of the early advances in this field came through the advances of 

systems such as the MIThril system [31], the Georgia Tech Vest [32], and the 

VivoMetrics Shirt [33]. These first generation systems appear bulky and inflexible. 

Before these preliminary systems can become useful for many BAN applications, 

comfort, durability and flexibility must be addressed.  

In order for these body area network prototypes to be successfully realized and 

implemented in combat wound detection schemes, a few key elements must be 

characterized and improved. The main shortcomings that fall out of the sensing systems 

discussed above are their durability and size. In order for sensing systems employing 

these materials to be viable options, the incorporation of sensors needs to be enacted in 

such a way as to avoid bulkiness and rigidity in the final product. Additionally, harsh 

environments such as those presented to deployed soldiers, will require durable, 

efficient products. For these applications, power consumption must also be considered. 

If soldiers are to constantly wear these networks to monitor health, fitness and security, 

they must be comfortable and lightweight. Second, the accuracy of the data must be 

guaranteed to be collected, received and transmitted reliably. This calls for investigation 

into using these conductive textiles in communication systems in addition to their use in 

sensing systems. Wade’s previous work [29] shows that signals can travel through the 

fabric largely unimpaired. Many researchers have investigated using these textile 
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materials for antenna development as is discussed in the following section. Further 

development of low-power, lightweight, flexible, durable communication systems will 

allow for the success of these body area networks to propagate into other fields and 

applications. 

Conductive Textile Antenna Development 

 
 In addition to being used as a sensing device, conductive textiles can also be 

employed as a component in communication system development applications. There 

has been much research geared towards developing both on-body and off-body 

communication systems which utilize conductive textiles to implement textile antennas 

for the purpose of transmitting or receiving signals collected from or sent to sensors or 

detectors [34-43]. These antennas generally offer low-cost, lightweight, flexible 

alternatives when compared with their rigid counterparts. The key to textile antenna 

development is two-fold. First, thorough characterization of the various fabric layers 

much be performed so that accurate simulation can be achieved. Additionally, 

fabrication requirements must be determined and prescribed so that precise structures 

can be manufactured and incorporated into antenna designs. Antennas, like the sensing 

mechanisms discussed above, can be developed using metallized textiles or by sewing 

conductive thread. In lower-frequency applications, many choose to incorporate the 

metallized textiles due to the larger size of the antenna. However, for high frequency 

applications, the antenna size is much smaller and conductive thread can be tightly 

woven together with accurate antenna dimensions. 
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 Numerous configurations of textile antennas such as monopoles, patches, and 

slots have long been sought for body area network applications and could easily be 

incorporated in combat wound detection systems. Sensors connected within the body 

area network can, ideally, send their information wirelessly via textile antennas 

incorporated directly into the clothing. Sugiyama et al. [36] describe this very idea in 

their development of a wearable, dual-band antenna. This antenna is unique to most in 

that it is designed to be placed on the ring finger. This alone restricts the maximum 

dimensions of antenna fabrication. They propose feeding their T-shaped monopole 

antenna with a 50 Ω coaxial cable. The dual-band nature of this antenna also enhances 

its operation as there is resonance between 2.4 GHz and 2.5 GHz as well as resonance 

from 4.5 GHz to 10 GHz. [36] 

 A wide variety of flexible, lightweight antenna configurations have been 

developed at lower frequencies other than those mentioned in [36]. These 

configurations include patch designs, spirals, slots, and monopoles. For example, 

Galehdar [37] presents a linearly polarized rectangular patch antenna for incorporation 

into athletic uniforms and clothing. The draw for incorporating antennas into athlete 

clothing is substantial and can easily be extrapolated to militaristic avenues. Galehdar 

mentions the desire for coaches to have information useful in making tactical changes 

during a sporting event. With knowledge of how an athlete is performing 

biomechanically and physiologically, these changes can be accurately made. Gain is 

also an important characteristic for these antenna designs so that the battery size can 

be decreased while the range can be large enough for the event. Galehdar designs a 
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patch antenna operating at 2.45 GHz with thickness 1.6 mm and relative permittivity of 

1.63. He investigates the effects of bending in both the E and H planes. Determined 

experimentally, increasing the radius of bend decreases the resonant frequency in the E 

plane of the patch antenna. Similarly, the resonant frequency increases for positive 

bending angles and decreases for negative bending angles in the H plane. The 

maximum change in frequency for both planes is 8%. [37] For wideband antenna 

design, this change in resonant frequency is largely negligible. However, for narrow-

band resonance, special care must be taken in the design of flexible, textile antennas to 

ensure the changes in frequency of operation are acceptable throughout the bending 

and maneuvering of the antennas. Depending on its use in combat wound detection 

systems, antenna design may need to account for these bending effects. For 

localization applications demonstrated in this thesis, wideband antennas are used and 

will be less susceptible to bending as a result of their wideband nature. However, 

wireless transmission at Wi-Fi frequencies could be affected by this property. 

 Shimasaki [38, 39] also investigates the effects of bending on conductive textile 

antennas. He performs studies on a cavity-backed slot antenna bent along a spherical 

surface. The antenna developed to complete these studies has thickness of 2.5 mm and 

area of 95 mm x 90 mm and is created from conductive threads. The slot is realized by 

removing the conductive threads in the appropriate areas. The operation frequency of 

this antenna is around 2.3 GHz. Instead of reporting the effects of cylindrical bending as 

discussed in [37, 39], Shimasaki reports the effects of bending along a spherical 

surface. The radius of bending along the spherical surface of this antenna is 200 mm. 
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For the planar antenna, the bandwidth of the designed cavity-backed slot is 230 MHz as 

compared to a decreased bandwidth of 162 MHz for the bent case. The center 

resonance frequency also decreases by 84 MHz. [38] This down-shift in frequency is 

similar to the results presented by Galehdar. The radiation patterns differ slightly from 

the planar and bending scenario. The shape of the pattern remains similar though a 

slight decrease in directivity amplitude is visible. One potential source of inaccuracies in 

this design comes from the repeated bending and flexing of the cavity-backed slot 

antenna. This repeated motion could affect the dimensions of the cavity by producing 

thickness fluctuations over time. 

 In addition to the metallized fabric used for many antenna applications, some 

designers choose to, instead, weave metallized fibers into fabrics in the appropriate 

antenna shape. Morris et al. [40] proposes the use of metallized, high-strength Kevlar 

for conformal load-bearing antenna applications. These antennas can be of use for 

applications involving unmanned aerial vehicles (UAVs) due to their conformal, 

lightweight, and damage-resistant (high-strength) properties. Morris points out that, in 

some cases, the frequency of communication coupled with the small size of some UAV 

models forces the entire chassis to be used as the antenna. This places even more 

importance on a lightweight, durable antenna design. To meet these design 

requirements, Morris metallized Kevlar fibers and wove them into broadband antenna 

designs. This manual weaving of metallic thread is risky; if the thread were to break, the 

antenna would prove useless. Morris designed and fabricated a broadband spiral 

antenna on a polymer-ceramic composite meant for RF applications. This dielectric, 
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polydimethylsiloxane (PDMS), has the flexibility required to meet the antenna design 

specifications (thickness of 4mm) while offering a tunable permittivity up to 20 and a 

loss tangent less than 0.01. Its electrical properties are similar to those of the Rogers 

TMM4. The broadband spiral antenna is designed to work from 200 MHz to 1000 MHz 

and can be seen in Figure 9. The substrate was drilled using a 50 W laser to etch 

patterns for the fiber to be woven. The metallized yarn was then manually woven 

through the substrate using a sewing needle. They found that weaving the yarns 

created a gradual increase in the wire resistance and attribute this to the “deterioration 

of the metal film under cyclic flexing and torsion” [40]. It is possible that, due to 

consistent flexing over time, antennas created by this technique will not continue to 

function correctly. While it is not the Kevlar that is suspect to fail, the metalized coating 

 

 

Figure 9: Broadband Spiral Antenna Implemented by M orris et al. Using Metalized Kevlar Yarn 
[40]. 
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could wear off under repetitive stress. This is the primary challenge that faces the 

development of textile antennas using singular conductive threads. Further analysis 

would be necessary to determine the expected lifespan of an antenna created by 

weaving metallized threads. While the return loss matches decently with the test 

antenna printed on Rogers TMM4 at frequencies greater than 600 MHz, the realized 

gain measurements are dissimilar until approximately 750 MHz. At lower frequencies, 

the realized gain of the woven antenna is far inferior to the realized gain produced by 

the traditionally fabricated antenna. They attribute these inconsistencies to improper 

input matching at lower frequencies.  

 As mentioned above, conformal, load bearing antennas are an attractive option 

for UAV applications. These antennas are critical for low frequency communication 

applications in these scenarios. To ensure durability while maintaining beneficial 

characteristics such as flexibility and low weight, Wang et al. chose to adapt a multilayer 

approach to antenna fabrication. This approach utilizes lightweight, low-loss materials 

such as polymers as a dielectric for the textile antennas. Like the work completed by 

Morris et al., Wang chooses PDMS as the flexible dielectric for his patch antenna 

designs. Also like Morris, Wang [41] employs conductive thread to weave a patch 

antenna on his multilayer surface. Amberstrand silver-coated Zylon fibers with 

resistance of 0.8 Ω/m were used as this conductive thread. This envisioned multilayer 

surface is depicted in Figure 10. To test this new conductive fiber, a 31 mm x 31 mm 

probe fed patch was developed and placed on the PDMS substrate. This antenna was 

designed to resonate at 2.2 GHz. Compared to a simulated version of the same design,  
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Figure 10: Multilayer Textile Antenna for Integrati on into UAV Body Envisioned by Wang et al. [41] 

 
 

the fabricated textile patch antenna gain was only 0.2 dB lower. This corresponded to a 

textile antenna gain of 5.7 dB. It is evident that these textiles can be implemented in 

antenna design to provide a reliable, flexible solution to the UAV communication 

application. 

In addition to their aforementioned use in wireless body area networks as well as 

load-bearing applications, textile antennas are also a popular alternative in ultra-

wideband (UWB) applications. Klemm and Troester [42] develop a textile UWB antenna 

for wireless body area networks. They claim that their antennas offer direct integration 

into clothing due to their thinness and flexibility. They realize two different types of 

textile antennas: a coplanar-waveguide-fed disc monopole and an annular slot antenna. 

These designs operate in the entire UWB band, 3.1 GHz to 10.6 GHz, approved by the 

Federal Communications Commission. Each utilizes conductive textiles with very high 
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conductivity. This metallized Nylon fabric created by Shieldex has surface resistivity of 

0.03 Ω/sq. As the dielectric substrate, they use an acrylic fabric with thickness of 0.5 

mm. The permittivity of this dielectric was found to be 2.6 ± 0.1 over the frequency band 

of interest. As important as the fabric selection is the antenna fabrication. The antenna 

must be fabricated in such a way as to retain the correct antenna dimensions while also 

preventing a change of the electrical properties. Klemm uses adhesive iron-on sheets to 

achieve this goal. These sheets merely deposit a thin adhesive layer on the textiles 

such that the sheet resistance and permittivity parameters are not altered. An SMA 

connector was attached to the antenna using a two-part conductive glue. [42] 

 Difficulties exist in using textiles to implement antennas. As Klemm points out, it 

is difficult to implement CPW technology through manual means. They use a scalpel to 

realize the small widths between the ground plane and the signal. This is a very difficult 

task. In their fabrication process, they achieved a characteristic impedance of 59 Ω. As 

you can see, this is not a perfect match to a 50 Ω system. For textile antennas to 

become more accurate, the fabrication process must be addressed and higher accuracy 

be achieved. At low frequencies, up to 8 GHz, the textile antennas agree well with 

traditional printed circuit board (PCB) antennas. Above 8 GHz, however, the losses of 

the textiles outweigh those of traditional PCB antennas. However, it is evident that these 

antennas are a viable option for UWB systems. The received pulses of a two-antenna 

system with textile antennas match near perfectly with the PCB antennas. Klemm also 

investigates the influence of the body on the UWB antennas. As the antenna moves 

closer to the body, the normalized amplitude of the transmitted pulse decreases. 
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Interestingly, when the antenna is 6 mm from the body, the transmitted pulses are 

higher in amplitude than the transmitted pulses in free space. Klemm and Troester [38] 

attribute these results to indication that the body constructively reflects electromagnetic 

waves at frequencies greater than 4.5 GHz. 

 Giddens [43] investigated the influence of the body on wearable antenna 

efficiency. With this information, it is hopeful that more efficient antennas could be 

developed for use in body area network applications. This study analyzes the reflection 

coefficient of the antenna at different distances away from the body. They confirm 

through simulation and measurement that no significant detuning occurs as a result of 

proximity to the phantom. While increasing the ground plane of the patch antenna did 

not alter efficiency, their study shows that a 75% increase in efficiency can be obtained 

by spacing the antenna away from the body. In Table 1, data was reproduced from their 

presentation to describe the increase in efficiency seen as the distance between the 

body and patch antenna was increased. Similar results were obtained through other 

studies performed by Zhu [44], Klemm [45], and Thompson [46]. Instead of increasing 

the distance from the body to improve efficiency, Zhu [44] incorporates the antenna over 

an electromagnetic band gap structure. Klemm [45] illustrates the differences between 

on-body and off-body communication, while Thompson [46] focuses his efforts on the 

antenna mounting method and how that can be altered  
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Table 1: Effect of Increasing Distance between Body  and Textile Antenna on Antenna 
Efficiency as Shown by Giddens, et al. [43] 

Number of felt layers 
Measured Efficiency 

(±5) (%) 
Maximum Measured 
Radiated Power (dB)  

0 

1 

3 

5 

7 

29 

33 

34 

46 

51 

-2.3 

-2.6 

-1.5 

-1.1 

0 
 

to improve the “correlation coefficient of body worn antennas’ reflection coefficients on 

and off the body” [46]. 

Substrate integrated waveguide technology has also been introduced to textile 

antenna development to improve the bandwidth and input matching characteristics of 

the antenna and eventually can be used for long low loss transmission lines embedded 

on the fabric. Moro [47] designs a cavity-backed dog-bone slot antenna in substrate 

integrated waveguide technology. There are numerous benefits for utilizing the cavity 

for textile antennas to be used in on-body communication applications. These include a 

suppression of surface waves, lower sensitivity to body proximity, and high front-to-back 

ratio [48]. The substrate used to fabricate this antenna is protective foam typically 

incorporated into firefighter uniforms. It has a thickness of 3.94 mm, permittivity of 1.575 

and a loss tangent of 0.0238 at 2.45 GHz. The top and bottom conductive textile layers 

employ Flectron with surface resistivity of 0.18 Ω/sq at 2.45 GHz. The substrate 

integrated waveguide technology is realized by perforating the antenna and placing 

metal eyelets in each of the holes. These eyelets are 7 mm in diameter and are spaced 
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14 mm apart. The complete antenna fabricated by Moro is shown in Figure 11. The 

Flectron sheets are the copper colored sheets in Figure 11. This antenna was tested 

stand-alone and resonates at 2.45 GHz with broadside gain of 3.9 dBi measured 

(compared to 3.21 dBi simulated). It was again tested after integration into the backside 

of a firefighter uniform between the waterproof and moisture/thermal barrier layers. The 

body proximity does not affect this antenna as the resonant frequency is negligibly 

decreased and the radiation patterns generate the same approximate shape. It is 

worthwhile to note, however, that Moro reports a measured broadside gain of 4.9 dBi 

during the on-body test. This increase is “attributed to the wider ground plane caused by 

the presence of the body” [47]. The use of substrate integrated waveguide technology in 

textile antenna design could be useful to improve the on-body characteristics as 

compared to antenna development neglecting the effects of body proximity. 

 

 

 

Figure 11: Substrate Integrated Waveguide Cavity-Ba cked Dog-Bone Slot Antenna Fabricated by 
Moro et al. [47] 

 



www.manaraa.com

31 
 

 
 

 Some important challenges still face the development of textile antennas. The 

fabrication process must be thoroughly addressed before textile antennas can become 

a major success. The manual fabrication aspect of these antennas generates 

inconsistencies in design and disallows for repeatability in measurement. The design of 

each of the antennas presented manually defines the antenna patterns using a sharp 

knife or scalpel. This introduces many sources of error and creates difficulty in ensuring 

a good match. Automating sections of the process, if not the entire process, would allow 

much more accurate textile antennas to be developed. This would lend the ability to 

develop precise textile arrays fed with microstrip or coplanar waveguide transmission 

lines. Until this automation can allow for this precision, however, alternative feeding 

methods should be investigated. Additionally, there is great difficulty in ensuring the 

multiple layers, after they have been cut, are properly aligned on either side of the 

dielectric material. Without this alignment, the antenna cannot be expected to function 

according to simulation. If either of these challenges can be overcome, the development 

of textile antennas can be revolutionized and be implemented into many applications. 
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CHAPTER III: Materials 

 Combat wound detection applications require that the used materials meet a 

number of specifications including that they be durable, reliable, lightweight, and thin. 

These requirements are in addition to electrical requirements such as conductivity for 

data transmission and resistivity for distributed textile sensing. Numerous materials 

were used create a sensing system as well as communication system components 

which met each of these requirements. This chapter investigates the selection of these 

materials and their purpose in their respective combat wound detection system uses. 

Among the materials investigated are conductive textiles, dielectric textiles, fabric-based 

sensor materials, and adhesive materials.  

Conductive Textiles 

 Swift Textile Metalizing provided our team with a fabric sample portfolio that 

allowed an accurate decision to be made regarding the conductive textile selection. 

These fabrics varied in thickness, weave, electrical resistance, and metal coating. While 

the electrical properties of these samples would allow the material to be used in a 

variety of applications, its physical parameters must also be evaluated. In some cases, 

the sample was a mesh as opposed to a fabric sheet. This mesh does not provide the 

durability and security required for some applications. For comparison, Table 2 lists the 

properties of the various samples. Specifications for both the remote sensing and 

antenna development applications garner different material considerations. For 

example, to develop a fabric-based sensor, it is desirable to have a textile with greater  
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Table 2: Fabric samples provided for consideration by Swift Textile Metalizing, LLC 

Material Base Fabric Metal Coating Thickness  
(mm) 

Electrical Resistivity  
(Ω/sq) 

Continuous Nylon Loop 

Nylon Knit 48×21 

Nylon Tricot Knit 55×40-2 

Nylon Knit 55×40 

Nylon Knit 13×26 

Non-Woven Point Bonded 10 

Non-Woven Point Bonded 20 

Nylon Rip Stop 

Nylon Rip Stop 

Nylon Rip Stop 

Nylon Heavy Rip Stop 

Nylon Taffeta 

Spandex 

Ag 

Ag 

Ag 

Ag 

Ag 

NiAg 

NiAg 

NiAg 

3NiAg 

Ag 

Ag 

NiAg 

Ag 

0.86 

0.18 

0.23 

0.18 

0.15 

0.23 

0.38 

0.10 

0.10 

0.10 

0.18 

0.13 

0.57 

< 1.5 

< 1.0 

< 0.5 

< 1.0 

< 5.0 

< 1.0 

< 0.1 

< 0.1 

< 0.05 

< 1.0 

< 1.0 

< 0.1 

< 1.5 

 
 

surface resistivity. This characteristic allows for more accurate sensing to determine 

touch and intrusion. Alternately, signal transmission requirements prevent the use of 

resistive textiles and, instead, promote the use of highly conductive ones. In each of 

these cases, however, metallization uniformity is paramount. 

 To meet the requirements of a distributed textile sensor, the spandex fabric with 

electrical resistance less than 1.5 Ω/sq was selected. Alternatively, the 3NiAg Nylon Rip 

Stop was selected to meet the high conductivity requirements associated with antenna 

development and signal transmission methods. The material’s small thickness as well 

as its low resistivity is ideal for this application. Additionally, the 3NiAg Nylon Rip Stop is 

a similar textile to those implemented in previous textile antennas as discussed in 

Chapter II (e.g., Shieldex Nora) and is more conductive than the copper Flectron textile. 
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The conductivity of these materials can be determined by knowing the material 

thickness and sheet resistivity and by using the relationship in Equation (7) where σ is 

the fabric conductivity in S/m, ρs is the sheet resistivity in Ω/sq, and t is the fabric 

thickness in meters [49]. 

 � = � ��� ∗ �	
  (7) 

Dielectric Materials 

Another key component to textile antenna development is the selection of an 

appropriate dielectric material. This material must successfully balance all application 

requirements such as flexibility, durability, thickness, and dielectric loss. For example, 

wireless body area networks require the antenna to be lightweight, conformal, easily 

integrated into clothing, flexible, and inexpensive. For these applications, a lightweight, 

inexpensive dielectric textile is preferred. Contrasting with this would be lightweight 

textile antenna development for a more rugged scenario such as deployment on UAVs. 

UAV textile antennas must offer the same specifications as the wireless body area 

networks while also committing to be highly durable and tear resistant. In these 

applications, a higher strength fabric is desirable. This fabric, however, must still provide 

sufficient electrical characteristics to complement its physical properties. Investigation 

into an acceptable dielectric returned a number of potential solutions. These candidates 

are presented in Table 3. The permittivity and loss tangent values for these textile 

materials are taken from 40, 44, 47, 50, 51]. PDMS, polydimethylsiloxane, is a flexible  
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Table 3: Dielectric fabrics for consideration by Mo rris [40], Zhu [44], Moro [47],  
Ouyang [50] and Sankaralingam [51] 

Material Base Fabric Thickness  
(mm) 

Relative 
Permittivity 

Loss tangent – 
tan(δ) 

PDMS 

Silk 

Moleskin 

Felt 

Fleece 

Firefighter Protective Foam 

Cordura 

Cotton 

100% Polyester 

Quartzel Fabric 

Jeans Cotton 

4.0 

0.58 

1.17 

1.1 

2.55 

3.94 

0.57 

0.145 

- 

- 

2.84 

Tunable to 20 

1.75 

1.45 

1.38 

1.17 

1.575 

1.90 

1.60 

1.90 

1.95 

1.67 

< 0.01 

0.012 

0.05 

0.023 

0.0035 

0.0238 

0.0098 

0.04 

0.0045 

0.0004 

- 

 

 

polymer composite and not a textile material, but is included for dielectric material 

comparison. 

Durability is an important parameter when selecting textile materials. The denier 

rating of textiles corresponds directly to the textile strength; a higher denier rating 

implies higher strength. Due to its high denier rating of 1000, just shy of some Kevlar 

fabrics with a denier rating around 1200, as well as its relatively low loss and small 

thickness, the Cordura fabric was selected as a dielectric and insulating material. This 

fabric can be used for both applications in this thesis as it is strong enough to provide 

durability to a distributed textile sensor network as well as a sufficient dielectric for use 

in antenna development. 



www.manaraa.com

36 
 

 
 

All three selected textiles are shown in Figure 12; the high resistivity spandex in 

Figure 12(a), the high conductivity 3NiAg Nylon Rip Stop in Figure 12b), and the 

Cordura dielectric in Figure 12(c). 

Fabric-Based Sensor Materials 

 Creating a large-scale distributed fabric-based sensor utilizes a number of 

different materials in addition to the textile layers. To ensure a good electrical 

connection, adhesive snap electrodes and electrode cables were purchased from 

bio-medical.com and placed on the fabric sample in a desired pattern. These electrodes 

and electrode cables can be found in Figure 13 and Figure 14. 

Adhesive Materials 

An iron-on adhesive was used to secure multiple textile layers together. The adhesion 

process was fairly straightforward. After preparing the textile layers and cutting the  

 

     
                            (a)                                             (b)                                                (c) 

Figure 12: Textiles selected for our applications: (a) conductive spandex, (b) conductive 3NiAg 
nylon rip stop, (c) Cordura dielectric. 
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Figure 13: Adhesive snap electrodes for large fabri c samples. 

 

Figure 14: Electrode cables for connection between fabric and sensing hardware. 

 
 

paper-backed adhesion material to the appropriate dimensions, the adhesive layer 

could be laid on one of the textile layers. Applying heat causes the glue to bond with the 

textile layer and allows for removal of the original paper backing. Then the second 

textile layer is aligned with the first layer in the desired location. Applying heat to this 

second layer, once it is in position, bonds the two textile layers to one another. A 

diagram of this process is presented in Figure 15. The bonding is strong and durable, 
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even permitting machine washing without losing its adhesiveness. Once the multiple 

layers have been secured together, the various designs can be electrically connected to 

external equipment. This connection has been achieved in this thesis through the use of 

a two-part conductive epoxy, shown in Figure 16. The selected epoxy was AI 

Technology’s EG8028 High Strength Two Component Electrically Conductive Epoxy 

Paste Adhesive. After mixing equal parts of the epoxy components, a layer can be 

applied to the textiles, allowing for mating between the connector and textile design. 

This connection can be left to dry and secured using hot glue if added durability is 

desired. 

 

 

 
Figure 15: Multilayer textile adhesion process. 

Heat 

Heat 
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 An additional solution to electrically connecting multiple layers is by using 

conductive thread shown in Figure 17. Though resistive in large lengths, <100 Ω/cm, 

this thread can be overlapped and used over short distances very effectively. The 

process of overlapping the conductive thread forms parallel combinations of the 

resistances, thereby reducing the overall effective resistance. These threads can be 

utilized to emulate the metal walls of the SIW technology for signal transmission.  

 

 

 
Figure 16: Two-part conductive epoxy. 
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Figure 17: Electrically conductive thread. 
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CHAPTER IV: Using Conductive Textiles as Fabric-Bas ed Sensors 

Combat wound detection systems require combination and incorporation of 

distributed sensing capabilities coupled with data transmission techniques. Chapter IV 

focuses on utilizing conductive textiles as a sensing device to detect the presence and 

location of cuts and tears in the conductive textile. These discontinuities can be seen as 

a realization of bullet holes and wounds to the field-deployed soldier. The sensing 

method presented in this chapter couples with a data acquisition system to sense 

discrete changes in resistance at various points along the conductive textile.  

Incorporation of additional medical sensors, as mentioned in Chapter I, allows for 

medical personnel to not only measure the external safety of the deployed soldier but 

also the internal safety stemming from changing sweat levels, respiration rate, heart 

rate/pulse, blood pressure, etc. 

Distributed Fabric-Based Sensor Development 

One application using conductive textiles calls for textile implementation as a 

distributed sensor. For these textiles to produce readily detectable data, high resistivity 

conductive fabric can be used. Generally, a textile resistivity greater than 1.0 Ω/sq 

produces detectable changes in resistance. Spandex metalized by Swift Textile 

Metalizing was chosen to implement this sensor technology. This chapter analyzes the 

potential to utilize metalized spandex as a distributed sensor for combat wound 

detection by employing simple sensing to detect penetration and intrusion into 

conductive-textile-lined clothing. The form-fitting capability of spandex yields greater 
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certainty in fully covering a soldier in the desired areas such as over a bulletproof vest 

or field uniform.  

Resistance Network Theory  

By probing the textile surface at discrete locations and measuring the change in 

resistance over time, the integrity and safety of the soldier can be ascertained. For 

simplicity in data analysis and visualization, the resistance is probed at discrete 

locations over a grid pattern by measuring the corresponding analog voltages using a 

data acquisition system. If the resistive changes between successive acquisition times 

are large, damage to the fabric, whether accidental or intentional, becomes evident. 

With this knowledge, creating a resistive network between the probing points and 

measuring resistive perturbations can accurately determine if penetration by cutting or 

tearing holes in the textile has occurred. 

To provide certainty in the event of unwarranted penetration, simulation profiles 

to model the effect of penetration through the conductive textiles were developed and 

analyzed. With proper analysis, the comparison between simulation and measurement 

indicates evidence of penetration. The development of this simulation model requires 

knowledge of resistance network theory. The mathematical theory behind resistance 

matrices has been studied in great detail [52-57]. From this mathematical theory, a 

numerical technique was developed in MATLAB to simulate the properties of conductive 

fabric for cut detection. Implementation of the mathematical theory provides a solid 

theoretical base from which to model conductive textiles. Wu [52] describes a closed 

form expression, given in Equations (8) and (9), to analyze resistive grids of size M x N. 
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This expression determines the resistance between two nodes, r1 and r2, where r1 = (x1, 

y1) and r2 = (x2, y2) are defined. 

��������� ���, ��	
= �� |�� − ��| + � |�� − ��| + ��

∗ � � ���� ��� + �� !" ��� ��� + �� #$ − ��� ��� + �� !" ��� ��� + �� #$%��&��� − ���!"	 + �&��� − ���#$	
�&�

$'�

&�

"'�
 

(8)

where r and s denote the value of the resistances in the two principal directions and 

 !" = "( 					and					#$ = $(� 		. (9) 

This closed-form expression does not easily allow for the simulation of holes 

within the grid. To implement this capability, the methods presented by Grothmann [53] 

were adapted to a resistor grid network. Modeling conductive fabric as a large grid of 

resistors entails working under the assumption that the interior resistor matrix follows 

the mathematical theory of an infinite resistor grid. The conductive fabric, however, has 

finite boundaries. In this, the conductive textiles cannot be modeled as an infinite grid of 

resistors. Through the mathematical device known as an incidence matrix, these 

boundary limitations can be correctly accounted for. The incidence matrix is a 

mathematical body that maps the relationship between all nodes in a larger network. 

For this application, each row and column in the incidence matrix enumerates the direct 

electrical connections corresponding with that node in the resistor network. An example 

resistor network is illustrated in Figure 18. 
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Figure 18: Example resistor network. 

 

To populate an incidence matrix based on the resistor network, the direct 

electrical connections must be established with each node in the matrix. This matrix is 

of square size with each dimension equivalent to the number of nodes in the network. 

The example in Figure 18, with nine nodes, carries an incidence matrix of size 9 × 9. To 

populate the matrix, the computer model cycles through each node determining the 

appropriate electrical connections and placing a “1” in the corresponding location in the 

incidence matrix. This value of “1” corresponds to a resistor value of 1 Ω between each 

node in the example resistor network. For example, node 1 in Figure 18 has a direct 

electrical connection with nodes 2 and 4. So, the first row of the incidence matrix, 

corresponding with node 1, will be populated with a “1” in columns 2 and 4. This 

process is carried out for each node and presents an incidence matrix as seen in 

Equation (10). 
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 (10) 

 

After development of this incidence matrix, mathematical operations are 

performed to institute a test voltage at one corner of the sample textile. Matrix 

calculations are then executed to find the voltage and current at each node in the 

network. With this data, a resistance matrix can be formed which details the point-to-

point resistance from the test node to each other node in the resistor network. This 

resistance matrix can be plotted to observe the discrete changes in resistance between 

successive data acquisition times. As expected, the point-to-point resistance increases 

as nodes further away from the test node are probed. In Figure 19, the resistance grid is 

plotted as a surface of size 65 × 65. The increasing trend in resistance is obvious.  

Nonlinearities can be observed as the resistances are plotted near the edges. 

This is the result of having a finite boundary along the edge of the resistor network. 

These boundaries have fewer network connections and fewer paths for current flow and 

therefore do not increase uniformly as compared to the interior points. The rapid growth 

is even more dominant in the corners of the fabric and can be explained by an even 

larger reduction in potential current paths than in edge nodes. These nonlinearities 

would not be noticeable if an infinite resistor grid could be observed. The nonlinearities 

within a finite resistor network are better illustrated in the image in Figure 20 where the x 
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and y axes are the resistor grid locations and the z axis is the normalized resistance. 

This resistance matrix is also of size 65 × 65. 

 

 
Figure 19: Resistance grid illustrating the gradual  increase in resistance as the second probe 

location extends further away from the origin (top left). 
 
 

 
Figure 20: Resistance grid plotted as a surface to better visual the edge 

and corner nonlinearities. 
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The resistance grid simulation model provides identical results when compared 

to the closed-form mathematical expression provided by Wu in Equations (8) and (9). 

The accuracy of the model is, therefore, ascertained. In addition to providing an 

accurate representation of a conductive textile sheet, as will be further detailed below in 

the experiment review, the computer model also has the ability to predict the outcome of 

introducing cuts and holes within the fabric. Figure 21 illustrates a vertical cut being 

introduced along the top edge of the fabric. The increase in resistance as a direct result 

of this action can be attributed to a drastic change in current path length when 

compared to the uncut scenario in Figure 19. The model is capable of predicting the 

change in resistance from a variety of cuts as will be discussed later. 

After validating the accuracy of the model and performing successful simulations 

and experiments with the fabric sheet, the model was extended to predict the outcome  

 

 

 
Figure 21: Simulated vertical cut originating from the top edge and 

extending to the center node. 
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of a textile sheet wrapped around a three-dimensional structure such as a cylinder. 

Figure 22 illustrates a cylindrical structure with open top and bottom. This cylinder 

models a resistor grid similar to that seen in Figure 18. However, to achieve the cylinder 

effect, node 1 is electrically connected to node 3, node 4 is electrically connected to 

node 6, and node 7 is electrically connected to node 9. Again, the color mapping 

intensity suggests that the resistance increases as the distance between probing points 

increases. The edge effects associated with this model, however, are only seen on the 

top and bottom. 

As with the textile sheet, the cylindrical structure is capable of predicting the 

resistance changes associated with cuts and holes being introduced to the model. 

However, due to the size of the cylinder, change in resistance is not as evident when 

the secondary probe locations are far away from the origin. As such, it would be more  

 

 

 

Figure 22: Computer model of cylindrical resistor n etwork. 
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difficult to determine the presence and location of a cut. Changes in resistance far away 

from the origin promote the need for redundancy and multiple origins within the 

distributed sensing network. By fixing multiple locations and probing to every other 

point, greater resolution can be obtained. The robustness of the model allows other 

shapes to be developed in addition to cylinders. If the electrical resistor network can be 

accurately modeled, the incidence matrix can be computed and the resistance matrix 

can be determined. However, more complex structures may require additional 

visualization techniques to properly visualize the presence of cuts and tears. 

First Generation Fabric-Based Sensing System 

 To verify the accuracy of the computer simulation model for conductive textiles, 

experimental data were collected and analyzed. Initial manual measurement testing was 

performed to investigate the plausibility of conductive textiles following a resistor 

network construct. This was performed by manually probing marked grid locations with 

a digital multi-meter while maintaining one probe location constant in the corner. Manual 

measurements provided preliminary validation of this model. However, for added 

certainty, a more automated system for data acquisition was developed. Automation 

allowed for the reduction of error and experiment time compared to the initial manual 

method. 

 The first step in designing the test circuitry was to choose a method for effectively 

and precisely measuring electrical resistance and small variations in electrical 

resistance. With some consideration, it was evident that the use of a Wheatstone 

bridge, reproduced in Figure 23, would be the most effective design choice as a 
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compromise between measurement precision, ease of integration, and relatively low 

power consumption. The Wheatstone bridge is a simple circuit that is easily 

implemented on any testing printed circuit board designs. In order to develop a printed 

circuit board capable of probing multiple locations, multiplexing circuitry was 

implemented. The use of multiplexing circuitry also saves on expensive analog-to-digital 

converters. This printed circuit board was employed to measure the analog signal and 

compute the resistance from a simple mathematical formula shown in Equations (11)–

(13). When the bridge is balanced and the voltage VG is equivalent to zero, the 

resistance, RX, can be determined from Equation (11). However, if the bridge is 

unbalanced, the voltage VG must be accounted for. This variation on the bridge 

produces an RX value as shown in Equation (12) and simplified in Equation (13). If the 

resistances R1, R2, and R3 are known to high precision, then the resistance Rx can be 

 

 

 

Figure 23: Wheatstone bridge circuit. 
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determined to high precision. Variations in the source voltage, VS, will produce 

fluctuations in the measured voltage, VG, which results in lower precision in the 

determination of Rx. 

 
 ���� = �1�2 

 

 
(11) 

 34 = 5 �1�2 + �1 − ���� + ��637 

 

 
(12) 

 �1 = �237��� + ��	34��� + ��	 + 37�� − � 

 

 
(13) 

 
For ease of system development, National Instruments’ NI-6212 Data Acquisition 

System was selected with accompanying software package, the LabView Development 

Suite. The specifications regarding the analog input capabilities for this data acquisition 

system provide a 16-bit analog-to-digital converter with a sample rate adjustable to 

400 kS/s, which allows for very fine resolution of the Wheatstone bridge when a voltage 

range of ±0.2 V was used. This voltage range provided a voltage range sensitivity of 

5.2 µV and a voltage range accuracy of 0.089 mV. A system diagram for this first-

generation experiment can be found in Figure 24. The resistors R1 and R3, 

corresponding to Figure 23, were chosen to be 150 Ω while the resistor R2 was chosen 

to be 10 Ω as this is similar in size to the resistance received by the data acquisition 

system. Resistor R1 was chosen as a larger resistance to reduce current flow in the 
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Figure 24: System diagram for first-generation fabr ic-based sensor testing. 

 

bridge, while R2 was chosen to be 10 Ω as an approximate match to the measured 

resistances of the textiles. This match forces VG to be a lower voltage, which allows the 

data acquisition program to more accurately sense changes. 

 A printed circuit board was developed which allowed for inclusion of a small 

conductive fabric sample for discrete resistance grid sensing. The board and data 

acquisition system, developed as a proof-of-concept experiment for modeling 

conductive textiles as a large resistor grid, are shown in Figure 25. To ensure sufficient 

electrical connection between the circuit board and textiles, the textile samples were 

pressed against the exposed pads on the printed circuit board. These pads represented 

each discrete location to be probed through the multiplexing circuitry. The developed 

board contained four 16:1 multiplexers from Analog Devices, part number 

ADG706BRUZ, to accommodate the probing of 64 discrete locations on a 3.5 in. × 

3.5 in. textile sample. These 64 locations would provide measurements for an 8 × 8  
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Figure 25: Multiplexing circuit board connected to NI-6212. 

 

resistor grid. The Wheatstone bridge circuitry incorporated into the board design allows 

for measurement of various point-to-point resistances. Switching circuit control lines, as 

well as analog output measurements and DC power connections, were linked to the 

DAQ and a stable external power supply. 

By use of this setup, a point-to-point resistance matrix is developed by measuring 

the resistance between port 1 and each additional port (ports 2–64). The density of 

resistance points taken over the fabric sample allows for an accurate representation of 

the fabric sample as a resistive network. Analysis of the preliminary results showed the 

necessity for a more robust method of ensuring optimum electrical connectivity between 

printed circuit board pads and the conductive textile sample. The initial method was to 

place the fabric beneath a piece of Plexiglas so that the application of firm pressure 

would provide the electrical connection. This method seemed effective initially. 

However, the results varied between different experiments depending on both the 

magnitude and uniformity of force applied to the Plexiglas. These inconsistencies led to 
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the requirement of a more effective means of ensuring conductivity between the board 

and fabric. AI Technology’s EG8020 High Strength Two Component Electrically 

Conductive Epoxy Paste Adhesive, discussed in Chapter III, was placed on each pad 

and then adhered to the fabric samples to guarantee proper connection. Providing 

stable, accurate results, this technique was used for the collection of the data. 

Comparison between First-Generation Fabric-Based Se nsor Experimental Results 
and Computer Model Expectations 
 

Experiments were carried out in the manner suggested above to validate the 

modeling of conductive textiles as a large resistor grid. For comparison, the graphs 

illustrated below were normalized to their maximum values. Care was taken to reduce 

experimental error by factoring in trace and multiplexer component on-resistances from 

the data acquisition circuit boards. The resistance between port 1 and the data 

acquisition system was taken as this value. This resistance, assumed to be 

approximately equivalent for each of the ports, was subtracted from the overall 

resistance value calculated from the Wheatstone bridge equations. 

Three data sets were recorded for model validation. Each of these sets 

corresponds to different fabric configurations. These configurations were selected as a 

full fabric sheet, a sheet with a vertical cut extending from the center of the textile to the 

top edge, and a diagonal cut extending from the center to the top right corner of the 

sample. Samples were arranged so that incisions never directly encountered a contact 

pad on the data acquisition boards. This ensured that sound data was achievable 

through all 64 ports. For convenience, sectors of the plots in the discussion below will 
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be referred to as quadrants of a Cartesian coordinate system (i.e., the top right quadrant 

is quadrant 1 with quadrants increasing in a counterclockwise direction). This naming 

technique is clarified in Figure 26. 

Simulated (a) and measured (b) uncut conductive textile sheets are illustrated 

below in Figure 27. Since the measurement takes a total of 64 points creating an 8×8 

matrix, the simulation model was adapted to correspond to the same size resistor grid. 

Visibly, the difference between simulation and modeling is small. The main 

inconsistencies between the computer model and measurements reside along the 

boundary. The model predicts higher resistances along the outer boundary of quadrants 

1, 3, and 4. These minute differences can be attributed to the placement of the sample 

on the probing points. In simulation, the sample is probed at the outermost edge, 

whereas measurement probes the sample as close to the edge as possible. This subtle 

difference can increase the number of paths current can flow and thereby can slightly 

reduce the measurement resistance values. 

 

 

 

Figure 26: Quadrant naming convention for conductiv e textile samples. 
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              (a)                   (b)  

Figure 27: (a) Simulated and (b) measured conductiv e textile sheet. 

 
 
 The introduction of cuts and holes in the textile samples further tests the validity 

of the fabric resistivity model presented. Figure 28 compares the results modeled and 

verified through the introduction of a vertical cut between quadrants 1 and 2. As 

expected, there is a distinct increase in resistance along the edge of the cut opposite 

the first measurement location. As with the uncut sheet, error still exists along the 

boundary of quadrants 1 and 4. Additional error is present in quadrant 4 as seen from 

the differences in the gradient as the resistance sweeps in a clockwise motion from 

quadrant 3 to quadrant 1. 

 The final scenario presented for validation of the computer model illustrates a 

diagonal cut just shy of bisecting the first quadrant. This cut was chosen to be just shy 

of 45° to avoid removing any measurement points. Th is scenario provided the largest 

discrepancy between simulation and measurement. The presence of a diagonal cut is 

much harder to ascertain from the measurement data presented in Figure 29. A faint  
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                                          (a)                   (b)  

Figure 28: (a) Simulated and (b) measured conductiv e textile sheet illustrating the 
presence of a vertical cut. 

 

 
                                         (a)                   (b)  

Figure 29: (a) Simulated and (b) measured conductiv e textile sheet illustrating the 
presence of a diagonal cut. 

 

 

stair-stepped pattern resulting from the diagonal cut can be seen in the measurement, a 

pattern far more visible in simulation. 
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A comparison between simulation and measurement supplements the theory 

posed above: conductive textile samples do follow the mathematical relationship of a 

large grid of resistors. The most favorable comparison between the simulation model 

and the measurements was evident in the full textile sheet case. There were very few 

discrepancies between the simulation and measurement. Similarly, the vertical cut 

scenario provided clear evidence of a cut in the conductive fabric sample. However, the 

diagonal cut scenario returned inconclusive results when compared with simulation. The 

differences between simulation and measurement are more attributed to the experiment 

than to a fault in the computer modeling software. The data generated by the cutting 

experiments by no means discredit the model but must take into account that more 

avenues for error are available in these measurements. Sustaining a good electrical 

connection throughout the experiment is difficult due to the motion of the fabric as it is 

being cut. The act of making an incision in the textile sample could have altered the 

electrical connection between the sample and the probing points. It is noteworthy to 

mention, however, that even in the worst case, a percent difference calculation between 

simulation and measurement points yielded 76% accuracy in the diagonal cut scenario. 

Comparatively, the uncut textile sheet displayed over 95% agreement with the model, 

while the vertical cut scenario displayed over 90% accuracy. Combat wound detection 

systems require knowledge of the location and size of the penetration. Application of 

this technology in such a system requires more reliable data collection and verification 

techniques. 



www.manaraa.com

59 
 

 
 

The results gathered through this experiment validate the developed computer 

model. In future work, a few questions need to be answered. Chief among these is 

providing a secure electrical connection that can withstand the act of penetration and 

return reliable evidence as to the certainty of penetration. Additionally, a system that 

permits the analysis of larger textile samples must be created. This technology cannot 

be applied if its size restricts applications to a 3.5 in. × 3.5 in. textile sample. To the 

untrained eye, it may be difficult to understand the presence of a cut based on the 

visualization methods presented. It would be helpful to implement a weighting function 

or masking function that would help to normalize the graph and illustrate only the 

evidence of cutting or tearing instead of plotting the case-by-case resistance grid. 

Implementation of such a weighting function calls for real-time updates of the data 

acquisition software to ensure that resistance perturbations are not overlooked through 

periodic data acquisition runs. The masking function implemented to solve these 

problems as well as the physical limitations surrounding this technology is discussed in 

the following section and compared with experimental results. 

Second-Order Discrete Laplacian Mask 

 In order to present the resistance grid in such a way as to emphasize the 

presence of cuts and tears in the conductive textile, a masking method must be 

implemented. A second-order partial differential equation can be applied to distinctly 

illustrate these resistive changes. Specifically, the resistance grid results can be 

normalized through the use of Laplace’s equation. Being a second-order equation, the 

discrete Laplacian can be used as a smoothing filter while enunciating the highest 
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gradient changes. The derivation of the solution to Laplace’s equation is credited to 

Mitra [58]. A typical Laplace problem follows Equation (14). 

 8�# = 9�#9�� + 9�#9�� = 0 (14) 

Based on this equation, an accurate second-order finite difference approximation can 

be made for both the x and y directions. Three points on each axis separated by a 

distance h are labeled i − 1, i, and i + 1. This is depicted in Figure 30. The second-order 

finite difference approximations are given in Equations (15) and (16) and follow from the 

Taylor expansion of a function φ(x, y) at three points φi-1, φi and φi+1. These 

approximations are exhibited graphically and mathematically below. The superposition 

of the x and y direction stencils creates a second order, five point stencil shown in 

Figure 31. Ignoring the higher order terms allows for Equation (17) to be composed. 

 

 

 

 

 

Figure 30: Finite difference along the x and y directions. 
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Figure 31: Five-point stencil for the two-dimension al Laplace equation. 

 
 
 
 9�#9�� |: = #:+� − �#: +#:−�;� +< �;�  

 

 
(15) 

 9�#9�� |= = #=+� − �#= +#=−�;� +< �;�  

 

 
(16) 

 
 >9�#9�� + 9�#9��? |:,= � #:��,= ��#:,= �#:��,=

;� �	
#:,=�� � �#:,= �#:,=��

;�  

 

(17) 

By substituting the result of Equation (17) into Laplace’s equation, given in Equation 

(14), we find: 

 #:,= �
�
@ �#:��,= �#:��,= �#:,=�� �#:,=��  . 

 

(18) 

Equation (18) suggests that applying the two-dimensional discrete Laplacian operator to 

the resistance matrix will have an overall smoothing effect on the resistance grid. The 

value of each point, (i, j), will reduce to the average of the four surrounding points. The 
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smoothing effect is dictated by the fact that Laplace’s equation is a second-order partial 

differential equation as described above. The presence of cuts and penetrations, 

however, will be enunciated by this mask due to the large gradient changes in adjacent 

resistive measurements. Figure 32(b) illustrates the effect of performing the discrete 

Laplacian on the resistance grid. It is depicted as a surface to enable visualization of the 

smoothing effect that the discrete Laplacian operator provides. The corners and edges 

still exhibit the upward turn due to the decrease in potential current paths. However, the 

overall shape is much flatter than that seen in Figure 32(a). 

 Applying this Laplacian operator to the same simulated experiments discussed 

above yields promising results. The goal of this operation is to illustrate only where 

penetration of the fabric has occurred and ignore the other areas. In effect, places that 

experience the most change in resistance will be highly recognizable compared to those 

places that are unaffected by resistance change. This is evident in the images below. 

Figure 33 shows a simulated conductive textile sheet with no cuts both with and without 

applying the Laplacian. Figure 34 depicts this relationship when a vertical cut is applied, 

and Figure 35 with a diagonal cut applied. In addition to these cuts, Figure 36 shows the 

simulation results when a single point is affected by a cut or penetration. In Figure 36(a) 

there is no evidence that this penetration has occurred; however, by performing the 

discrete Laplacian operator, the location of this penetration becomes evident as shown 

in Figure 36(b). The gradient changes are made more apparent through application of 

the discrete Laplacian operator as is evident in the results presented below.   
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(a) (b) 

Figure 32: Simulated conductive textile sheet witho ut (a) and with (b) application of the discrete 
Laplacian operator. 

 

  
(a) (b) 

 Figure 33: Simulated conductive textile sheet witho ut (a) and with (b) application of the discrete 
Laplacian operator. 

 
(a) (b) 

Figure 34: Simulated conductive textile sheet exhib iting a vertical cut without (a) and with (b) 
application of the discrete Laplacian operator. 
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(a) (b) 

Figure 35: Simulated conductive textile sheet exhib iting a diagonal cut without (a) and with (b) 
application of the discrete Laplacian operator. 

 

 
(a) (b) 

 Figure 36: Simulated conductive textile sheet exhi biting the effect of a penetration or cut on a 
single point without (a) and with (b) application o f the discrete Laplacian operator. 

 
 
 
 To implement the discrete Laplacian for our measurement systems, a second-

generation printed circuit board was developed. This board also altered the probing 

method to produce more reliable electrical connections throughout the experiment. With 

an adapted version of the data acquisition system and hardware, experimental data 

have been collected and processed with the discrete Laplacian operator. The inclusion 

of the discrete Laplacian provides more reliable, accurate evidence that the conductive 
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fabric has experienced a cut or penetration. Additionally, the use of this operator better 

allows for quick localization of the perturbation within the resistance grid. 

 To solve the other problems mentioned above regarding the experimental 

procedures and electrical connection between the probes and the textile sample, a new 

printed circuit board was developed. This board retains the use of multiplexing circuitry 

to cycle through the 64 ports but moves the ports to the outside of the board instead of 

constricting them to a 3.5 in. × 3.5 in. square. The pads on the outside of the circuit 

provide an area to which cables can be connected by soldering. The second-generation 

fabric-based sensor employs electrocardiogram (EKG) cables and snap-electrode 

connections to provide adequate electrical conductivity between the fabric sample and 

data acquisition hardware. Experimental results are obtained and analyzed in the 

forthcoming sections. 

Second-Generation Fabric-Based Sensor 

 After the results of the first-generation proof-of-concept experiment validated the 

computer model, development of a more robust second-generation system began. The 

goal of this system was to alleviate some of the problems encountered in the first 

system. These corrections included a more secure electrical connection between the 

multiplexer probes and the conductive textile and the allowance for any size of fabric to 

be tested as opposed to a small square. Figure 37 depicts the second-generation 

printed circuit board developed to meet these requirements. As shown, the probe 

locations line the edge of the board, allowing for external probing. This board meets the 
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Figure 37: Second-generation fabric-based sensor bo ard. 

 

same specifications as the previous board by implementing four 16:1 multiplexers for 

switching and a Wheatstone bridge for precise resistance measurements. 

 EKG cables are placed on the fabric through a connection between the fabric 

and an adhesive snap electrode. These snap electrodes and electrode cables are 

detailed in Chapter III. Attaching these electrodes and cables to the fabric results in a 

system as depicted in Figure 38. As shown, the placement of these electrodes 

resembles a grid. This structure was chosen for visualization comparison between the 

simulation model and the results. In reality, the sensing points can be chosen randomly 

for a given application. They need not follow a distinct pattern so long as the 

visualization tools are capable of accurately depicting the electrode array. For example, 

heartbeat measurements may be calculable in addition to penetration detection if the 

electrodes are placed in close proximity to the heart as is performed by EKGs. The 
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second-generation sensing system with fabric connected to the sensing board and data 

acquisition system can be seen in Figure 39. 

Experiments conducted with this system were similar to those from the first-

generation validation. National Instruments’ LabView was used to gather real-time 

samples of the fabric and process the data to return a plot of the textile resistance grid. 

 

 

Figure 38: Large conductive textile sample with ele ctrodes connected. 

 
 

 
Figure 39: Second-generation sensing system. 
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The LabView block diagram from this data acquisition system is shown in Figure 40. 

The plots below examine the ability of the second-generation system to accurately 

detect and define penetration or resistive changes within the textile sample. The 

discrete Laplacian operator has been implemented to better visualize the collected data. 

Each image is compared with original resistance grid data prior to applying the discrete 

Laplacian for comparison. 

 Through experimentation, it was determined that a base calibration would be 

necessary to provide the most accurate results. Originally, the resistance variance 

between points, attributed to the varying on-resistance of the multiplexers, highlighted 

some areas not affected by a cut. To solve this inconsistency, a calibration was 

performed on the base fabric prior to cut implementation. The inclusion of a cut then 

became more pronounced as the results below suggest. 

 

 

 
Figure 40: LabView block diagram for data acquisiti on. 
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The first experiment conducted with this method used a solid sheet. Figure 41 

illustrates the results of this experiment. Figure 41(a) shows the solid sheet point-to-

point resistances. Figure 41(b) depicts the result of applying the discrete Laplacian to 

the resistive grid of Figure 41(a). Figure 41(c) illustrates the resistive difference between 

the measurement and calibration results. In the case of a solid sheet, subtle differences 

are expected. Lastly, Figure 41(d) shows the result of applying the discrete Laplacian to 

the difference plot of Figure 41(c). This same format is applied for each of the 

experiments conducted below. For ease of comparison, the color mapping scales were 

equated for each experiment. The raising of the upper limit of the color map lowers the 

sensitivity of the image to detecting cuts. In comparison to the results of the discrete 

Laplacian being applied to resistance grid, the results of the same mask being applied 

to the calibrated difference results in values half the original magnitude. This means that 

the ability for the calibrated measurements to sense changes will be much greater than 

the uncalibrated measurements. 

 Following the solid sheet calibration measurements, a vertical incision was 

introduced to the textile, and the same experiment was conducted again. The physical 

cut can be seen in Figure 42. Figure 43(a)–(d) shows the results of this cut when 

compared with a solid sheet calibration measurement. As can be seen, the vertical cut 

is clearly defined in all the measurements shown in Figure 43. However, by applying the 

discrete Laplacian to the difference between the calibration and measurements, more 

information can be gleaned about the cut size and location. Figure 43(d) helps to 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 41: Solid sheet experimental results. (a) Re sistance measurements, (b) discrete Laplacian 
of resistance measurements, (c) difference between measurements and calibration, (d) discrete 

Laplacian of difference between calibration and res istance measurements. 
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suggest the size of the cut shown in Figure 42 as well as the location. As expected, the 

changes in resistance are higher at the edge. This phenomenon is accurately depicted 

in all the measurements. Without applying the base calibration, inflection points are 

present in the measurement data as shown in Figure 43(b). Similar results can be found 

for each of the cuts discussed below. 

 
 
 
 
 

 
Figure 42: Experiment with vertical cut introduced to textile. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 43: Vertical cut experimental results. (a) R esistance measurements, (b) discrete Laplacian 
of resistance measurements, (c) difference between measurements and calibration, (d) discrete 

Laplacian of difference between calibration and res istance measurements. 
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 After applying the vertical cut, the sample was replaced, and a calibration was 

again performed. Then, a diagonal cut was applied. The physical cut can be seen in 

Figure 44. Figure 45(a)–(d) shows the results of this cut when compared with a solid 

sheet calibration measurement. Each plot suggests an anomaly existing on the right 

edge of the textile sample. This corresponds accurately with the cut applied as shown in 

Figure 44. The greatest definition of the cut can be seen in Figure 45(d). This figure not 

only accurately predicts the presence of a cut but is also accurate in suggesting the 

location. The location can be determined by noting the area of highest intensity, shown 

by dark red in the figures. If a probing grid as shown in Figure 44 is superimposed on 

top of Figure 45(d), it makes sense that the rightmost point on the second row is 

affected the most when the resistance is measured between that point and the fixed 

point on the top left corner. With increased resolution, the length of this cut could be 

more accurately determined. 

 
 
 

 
Figure 44: Experiment with diagonal cut introduced to the textile. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 45: Diagonal cut experimental results. (a) R esistance measurements, (b) discrete Laplacian 
of resistance measurements, (c) difference between measurements and calibration, (d) discrete 

Laplacian of difference between calibration and res istance measurements. 
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 With the same sheet, a second cut was applied in a vertical form along the lower 

edge of the sample. This cut tested the ability of the measurement algorithm to detect 

multiple cuts. The cuts are shown in Figure 46 with results presented in Figure 47(a)–

(d). The detection algorithm is successful in detecting multiple cuts on the same sample 

of conductive fabric. In the resistance measurement plots there is little evidence of a 

perturbation existing on the lower edge as a result of a vertical cut between the third 

and fourth measurement probes. However, by performing the discrete Laplacian, this 

cut has now become evident. It is interesting to note the indication of a perturbation on 

the top edge of the sample directly above the cut. When MATLAB performs the discrete 

Laplacian, cubic interpolation is used to estimate the exterior edge resistances. This 

interpolation may create a source of error as shown on the top edge of Figure 47(b) and 

Figure 47(d). More measurements may prove to eliminate the case of false detection as 

is somewhat illustrated through this experiment. 

 
 
 
 

 
Figure 46: Experiment with multiple cuts introduced  to the textile. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 47: Multi-cut experimental results. (a) Resi stance measurements, (b) discrete Laplacian of 
resistance measurements, (c) difference between mea surements and calibration, (d) discrete 

Laplacian of difference between calibration and res istance measurements. 
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 The final experiment conducted was to analyze the presence of a hole in the 

fabric. This hole could be a result of a bullet wound if applied to combat wound 

detection applications. As visible in Figure 48, the size of this hole is large as related to 

the density of measurement probes. Figure 49(a)–(d) illustrates the results of a cut of 

this shape. It is interesting to note that the detection of a hole in this location is similar to 

the detection of a vertical cut but of far less intensity. This similarity is attributed to the 

probing point density. The resistance measurements affected by this cut are similar to 

those measurements affected by the presence of a vertical cut. By increasing the 

density of probing locations, it is believed that a smaller hole could be detected. The 

intensity of the hole shown in Figure 49(c) is far less than the high-intensity levels of the 

vertical cut in Figure 43(c). Further analysis and resolution could help to ascertain the 

difference between a vertical cut and a hole. 

 
 
 

 
Figure 48: Experiment with a hole introduced to the  textile. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 49: Hole experimental results. (a) Resistanc e measurements, (b) discrete Laplacian of 
resistance measurements, (c) difference between mea surements and calibration, (d) discrete 

Laplacian of difference between calibration and res istance measurements.  
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 Overall, it is evident that this detection method is accurate for detecting the 

presence of cuts and holes within a fabric sample. Localization of these cuts is 

predictable through simple visual analysis. This capability is evident in the case of the 

diagonal cut and the multi-cut scenario. In many applications, this level of sensitivity is 

acceptable. For example, if incorporated into combat wound detection; the approximate 

location of a bullet wound could still provide myriad information to medical staff. This 

approximation can allow for a faster response time to treat the affected area as opposed 

to full diagnosis of the injury upon arrival of the medical staff. It is easy to imagine how 

this technology could be accurately employed in many applications. 

Variability Assessment 

 For the application of this technology to become realistic, the data must be 

accurately validated and proven to provide consistent information. If a soldier had a 

more serious wound than was reported by the combat wound detection system, the 

effective medical response time could increase owing to a lack of preparation. To 

ensure that data collected in this second-generation sensing system are valid, a 

variability assessment was performed. This experiment compared collected data to a 

normal distribution to help evaluate the potential sources of error. The first experiment 

averaged 20,000 samples for each cycle and completed 1,000 cycles. As Figure 50 

suggests, the data follow the trend of a normal distribution. Variation from this normal 

distribution can be seen in the outlying points. Figure 51 plots these same data as a 

histogram and compares the shape of the collected data to a Gaussian curve. Again, 

the general trend is approximately equivalent. The bars represent the number of 
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samples collected into each bin as represented by a range of resistance values. The 

variation in the location of each bin is minimal; with a standard deviation of only 

0.0026Ω about a mean of 5.7277Ω and range of 0.0127Ω. 

 

 

 

 

Figure 50: Comparing the collected data (blue) with  a normal probability distribution (red) for 
1,000 cycles. 
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Figure 51: Histogram plot of collected resistance d ata (blue) versus a normal probability 

distribution (red) for 1,000 cycles. 
 
 
 
 
 With a goal to improve the accuracy of describing this data set as a normal 

distribution, a second, more extended experiment was conducted. This time, each data 

point was averaged over 20,000 samples for 10,000 cycles. The data collected 

throughout this experiment, ideally, becomes more accurately described by the normal 

probability distribution with allowance for some variation due to the inconsistencies of 

the conductive textile metallization process and the unfamiliarity with how the resistance 

of the textile varies with time. However, there is some fluctuation evident still on the high 

end of the resistance measurement data. The results of these experiments can be 

found in Figure 52 and Figure 53. The presented data follows the same outline as that 

presented for the condensed data set described above. For the case of 10,000 

samples, the collected data had a standard deviation of 0.0057Ω about a mean of 

5.6785Ω  
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Figure 52: Comparing the collected data (blue) with  a normal probability distribution (red) for 

10,000 cycles. 

 
 

 
Figure 53: Histogram plot of collected resistance d ata (blue) versus a normal probability 

distribution (red) for 10,000 cycles. 
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and a range of 0.0360Ω. It is evident by looking at the comparison between the 

histogram data and the Gaussian fit curve that the data collected appears to less likely 

fit a normal distribution in this experiment. An attempt to understand this discrepancy 

resulted in measuring the drift in resistance over time.  

The resistance data collected during the 10,000 cycle run is also plotted in Figure 

54 versus sample count. This figure illustrates the drift over time of the measured 

resistance from point A to point B. These samples were taken over a time period of 

approximately 15 minutes. As the histogram in Figure 53 verifies, there is a drift to 

higher resistance over time. This drift results in a distribution that does not closely follow 

a normal curve. Without certainty in data collection, the false alarm rate in detecting the 

presence of penetrations based on resistive changes may be high. To eliminate the 

effects the time-based resistance variation may have on the false alarm rate, more 

frequent calibration is suggested. The calibration rate should be application specific; if 

the application is sensitive to 30mΩ changes in resistance, then the system should be 

recalibrated often so that the drift does not reach this level. Recalibrating too often will 

result in the hiding of true penetrations, however. For example, if a penetration occurs at 

time A but the system is recalibrated at times A-δ and A+δ, the results indicating 

penetration will only be visible for times A < t < A+δ. It is possible that this drift is a result 

of the data acquisition system’s internal analog-to-digital converter or other electronic 

components used in the data acquisition process. 
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Figure 54: Resistance drift over time collected for  one point-to-point resistance measurement. 

 

 

Before combat wound detection and localization technology can be fully 

implemented into a prototype, some issues need to be addressed. First, the copious 

amount of wires extending from the electrodes would need to be replaced with traces 

printed on or created out of textiles materials. Similarly, the data acquisition system 

would need to be developed on a small scale using a microcontroller with adequate 

sampling speeds for real-time analysis and enough analog precision to not mask small 

perturbations in resistance. If these items are addressed, it would be possible to 

develop an accurate prototype to use in combat wound detection applications. Future 

work to improve this technology is discussed in Chapter VI. 
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CHAPTER V: Using Conductive Textiles for Microwave Applications 

 In addition to their employment as a distributed fabric-based sensor, conductive 

textiles can also be applied to microwave applications. In these applications, the textiles 

can operate as a wireless transmitting device. Numerous antennae can be developed 

through the adhesion of conductive textiles to a dielectric fabric using the iron-on 

process discussed in Chapter III. Alternately, printing methods can be used to directly 

print metal onto textile surface through ink-jet printing or screen printing.  Additionally, 

this process can be applied to developed substrate integrated waveguides for signal 

transmission. In order for these antennas to correlate with the simulated designs, these 

textile materials must be accurately characterized and precisely defined through the 

fabrication process. 

Precise Antenna Fabrication Using a Laser Cutter 

 This thesis presents a low-cost method for fabricating textile antennas which 

offers higher precision than those previously developed through manual means. 

Traditionally, the fabrication process involves manually cutting the antenna patterns with 

a sharp knife or scalpel as discussed in the literature review of Chapter II. The proposed 

process, however, employs a laser cutter to accurately realize the antenna dimensions. 

Then, the textile layers are glued together using an iron-on process defined in Chapter 

III. This process is similar to those mentioned in literature. 

 The laser cutter technique can achieve high precision line widths, down to 0.5 

mm. After designing the antenna with Ansoft’s High Frequency Structure Simulator 
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(HFSS), it is exported to the laser cutter, which systematically cuts each layer of the 

antenna. The layers can then be assembled as mentioned. To meet the antenna 

fabrication needs of this research, the Epilog Zing 24 Laser System was utilized. Figure 

55 illustrates this machine cutting various monopole designs, which were developed 

and tested for ultra-wideband (UWB) applications as discussed below. 

 The Epilog Zing 24 laser cutter is capable of cutting a variety of materials such as 

textiles, wood, glass, and metal. Strict size limitations do exist with this machine, 

however. The maximum allowable continuous antenna design cannot exceed 24” x 12”. 

Additionally, the maximum material thickness cannot exceed 7.75”. Thickness 

limitations are irrelevant to this research since textiles are being laser defined layer by 

layer. This fabrication process offers a quick, effective solution for cutting textile 

antennas. Within a few minutes, a complicated design can be accurately defined and 

the system can be ready to prepare another prototype. User-defined parameters that 

allow for varying scales of precision include adjustable dot density (100 to 1000 dots per 

inch [dpi]) and adjustable speed and laser power (from 1 to 100 percent). Using this 

machine, an 8-element microstrip-fed patch array can be laser cut in approximately five 

minutes at a 500dpi setting with 40% power, and 25% speed. This design, due to its’ 

complexity, was not able to be accurately glued to the dielectric material. In future 

antenna designs, support bars were incorporated to stabilize the design during transport 

and assembly. Settings of 500 dpi, 40% power, and 25% speed were used to define the 

antennas presented throughout this chapter. 

  



www.manaraa.com

87 
 

 
 

 
Figure 55: Epilog Zing 24 laser system used to accu rately define antenna designs. 

 
 
 

In addition to accurately defining antennas by using lasers, this thesis 

demonstrates the ability to sew conductive vias into the designs through the use of 

conductive thread and a simple sewing machine. The sewing machine allows for 

 variations in stitch type, stitch length, and stitch width which promote the use of 

this automated technique for via implementation in the development of substrate 

integrated waveguide designs for signal transmission. After fabricating the antenna 

designs and assembling them using the iron-on process, an SMA connector is attached 

to the feeding point with the two-part conductive epoxy. As more antenna designs were 

tested, it became evident that this method of securing the connector would not suffice 

as the connectors could easily slip off the fabric during testing. Silicon hot-glue was 

layered onto the connector and textiles following the placement of the SMA connector 
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on the antenna design using the conductive epoxy. This technique provided enhanced 

stability for the SMA connector for handling and testing. 

Fabric Characterization 

 To develop functional antenna designs from textile materials, the textiles need to 

be accurately characterized. Specifically, the dielectric permittivity and loss tangent 

must be known, as the value of these dictate the antenna designs. In order to 

characterize the textile materials, a patch antenna was developed. The experiment 

suggested by Sankaralingam and Gupta [51] was used to extract the permittivity of the 

cordura substrate. The proposed technique used the patch antenna design equations to 

back-calculate the effective permittivity given the return loss characteristics of a 

fabricated patch antenna. The loss tangent can be approximated similarly. It can be 

reasonably determined by matching the width of the return loss peak in simulation with 

the width of the measured results; i.e. comparing the Q’s. This approach does produce 

some error, however. It assumes that the majority of the loss comes from the dielectric 

and that a limited amount comes from the metal conductive layers. If these layers 

attribute to the loss of the antenna significantly, then the loss tangent value derived from 

this experiment will be significantly skewed.  

 Based on the extracted permittivity and loss tangent results of various textile 

materials presented by Ouyang [50], the design of a patch antenna considered a loss 

tangent of 0.0098 and a relative permittivity of 1.90 as a starting point. Following the 

fabrication and testing of this antenna, it was shown that the relative permittivity is better 
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estimated as 2.05. Similarly, the loss is projected to be approximately 1.5× greater than 

that predicted by Ouyang. While the results generated by Ouyang may be accurate for 

cordura alone, they do not take into account the adhesive layers employed to secure 

the fabric layers together. These adhesive layers alter the electrical characteristics of 

the dielectric to produce the results of the patch experiment. Figure 56 illustrates these 

results. As shown, the simulated peak coordinates well with the measured values. The 

loss tangent is difficult to predict with this method because changing the loss tangent in 

simulation affects not only the width of the return loss peak but also the depth of the 

peak. A balance between the conductivity of the top and bottom textile layers, assumed 

to be 200,000 S/m based on manufacturer specifications, and the appropriate 

permittivity and loss tangent of the dielectric will yield the most precise results. 

Additionally, the connector losses and losses generated due to misalignment in the 

fabrication process were not considered in simulation. 

 

 
Figure 56: Patch antenna results for fabric charact erization. 
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Demonstration of Multilayer Capability 

 Once the appropriate electrical parameters of the conductive textile and dielectric 

layers had been extracted, further antenna development ensued. Even though line 

widths of 0.5 mm can be achieved through the laser cutting process, the handling of 

these thin textiles becomes quite difficult. Instead, the designs presented use more 

conservative dimensions with minimum widths greater than 1 mm. To illustrate both the 

capability of the laser cutter as well as the ability for conductive textiles to be used to 

implement multilayer antenna arrays, a wideband slot antenna was developed. This 

antenna utilized a similarly shaped feeding structure to achieve wideband performance. 

This shaped feeding technique was previously described by Liu et al. [59]. This design 

requires double side definition. 

The antenna was designed in Ansoft’s HFSS and operates with a bandwidth of 

approximately 4.81:1. The simulation model of the single-element slot antenna is shown 

in Figure 57. The fabricated antenna is shown in Figure 58. Swift Textile Metalizing’s 

conductive 3NiAg Nylon Rip Stop, along with nylon cordura dielectric, were used during 

fabrication of the slot antenna. Differences between simulation and measurement 

results could be caused by inaccuracies in the fabrication process. The fabrication of 

this slot antenna requires that the feed be placed directly in the center of the substrate 

while the feed structure clears the edge of the slot by just a few millimeters. In practice, 

ensuring spacing of only a few millimeters is difficult. 
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Figure 57: Simulation model of single-element wideb and slot antenna. 

 
 

 

 
Figure 58: Fabricated single-element wideband slot antenna. 
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The range of operation for the single-element slot antenna is shown to be approximately 

1.5 GHz to 6 GHz. This range of operation is illustrated in the return loss plot of Figure 

59. The general trend of the simulated return loss plot agrees well with the return loss 

measurements. The radiation patterns at discrete frequencies of 2 GHz, 3.5 GHz, and 5 

GHz are presented in Figure 60 through Figure 62 with comparison between the E and 

H planes as well as between simulation and measurement. The radiation pattern 

shapes correspond well with simulation. The primary difference between the measured 

radiation patterns and those simulated occur in the Phi = 90° plane. In these plots, the 

simulation suggests a squeezing of the pattern in the horizontal plane, whereas this is 

not evident to the same degree in measurement. These anomalies could be a result of 

improper alignment with the horn antenna as the textile antenna revolves in the 

anechoic chamber. These differences, however, are acceptable as the goal of  

 

 

 
Figure 59: Single-element slot antenna return loss.  
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(a) (b) 

Figure 60: Radiation patterns at 2 GHz. (a) Phi = 0 °, (b) Phi = 90°.  
Red, simulation; blue, measured. 

 
(a) (b) 

Figure 61: Radiation patterns at 3.5 GHz. (a) Phi =  0°, (b) Phi = 90°.  
Red, simulation; blue, measured. 

 
(a) (b) 

Figure 62: Radiation patterns at 5 GHz. (a) Phi = 0 °, (b) Phi = 90°.  
Red, simulation; blue, measured. 
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simulation is to provide an estimation of the actual antenna performance. If all losses 

were accurately taken into account in addition to the antenna being placed in an 

appropriate simulation environment, the measurements and simulation results could 

better agree with one another. The second difference appears in the radiation pattern 

null locations. The measured nulls are not always as deep as the simulated nulls. This 

discrepancy is attributed to the difficulty in exactly aligning the center of the horn 

antenna with the center of rotation and the central radiating point of the antenna under 

test. Slight misalignments suggest that the exact Phi = 90° plane is not being measured. 

Waviness of the antenna under test as it is revolved in the anechoic chamber can also 

be a source of error during measurements. 

 Following the development and validation of a single-element slot antenna, a 

two-element slot antenna array was developed to demonstrate the fabrication capability 

for relatively larger fabric areas. A picture of this fabricated antenna can be seen in 

Figure 63. Difficulty was encountered in the fabrication process of this antenna owing to 

the intricate feed structure seen in Figure 63. The spacing and straightness of the feed 

lines are important parameters for antenna design. Discrepancies existing between 

simulation and measurement are likely a result of these inaccuracies. The return loss of 

the two-element slot array is shown in Figure 64. There is good agreement between the 

simulation and measurement for this antenna design over the frequency range of 

operation, from approximately 1.5 GHz to 6 GHz. To correlate with the single-element 

slot results, the radiation patterns are again presented at 2 GHz, 3.5 GHz, and 5 GHz 

and are shown in Figure 65, Figure 66, and Figure 67, respectively. 
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Figure 63: Fabricated two-element slot antenna arra y. 

 
 
 
 

 
Figure 64: Return loss of two-element slot antenna array. 
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  (a) (b) 

 Figure 65: Radiation patterns at 2 GHz. (a) Phi = 0°, (b) Phi = 90°.  
Red, simulation; blue, measured. 

 
  (a) (b) 

 Figure 66: Radiation patterns at 3.5 GHz. (a) Phi = 0°, (b) Phi = 90°.  
Red, simulation; blue, measured. 

 
  (a) (b) 

 Figure 67: Radiation patterns at 5 GHz. (a) Phi = 0°, (b) Phi = 90°.  
Red, simulation; blue, measured. 
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 As with the single-element slot antenna, the two-element slot array differs from 

the simulated results in some areas. In each case, these differences are a result of the 

null location and magnitude. Due to misalignment in the chamber between the horn 

antenna and the textile antenna as the radiation pattern is being measured, the 

magnitude of these nulls as well as their location can be altered. The flexibility of the 

textile antennas creates difficulty in ensuring proper alignment as these patterns are 

measured. The Phi = 90° plane shows greater discrep ancy because the size of the two-

element slot antenna prohibits it from rotating about the center of the slot antenna feed. 

Instead, it rotates about the end of the antenna, generating further error.  

Ideally, the gain increase resulting from doubling the number of antenna 

elements is 3 dB. In practice, a gain increase greater than 2 dB is practical for array 

development when including the feedline insertion loss. Due to the difficulty in the 

fabrication process, the gain increase illustrated by the two-element slot array did not 

meet these standards over the frequency range of interest. At 5 GHz, there was a 

reduction in gain as opposed to an increase. Similarly, the gain increase at 3.5 GHz was 

only around 0.5 dB. At 2 GHz, the gain increase was more acceptable, increasing by 

approximately 1.2 dB. More precision in the fabrication process might allow for better 

results to be obtained in the array comparison. Error in fabrication can lead to 

mismatched slot antennas. That is to say that the two-element slot antenna may not be 

a doubled reproduction of the single-element antenna. Barring this certainty, accurate 

array development and results may not be possible. In simulation, the gain increases 

between 1 dB and 2 dB for the textile antenna when the conductor boundaries are a 
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perfect electric conductor and the dielectric loss of the cordura textile is considered. The 

above investigation validated our capability to fabricate multilayer fabric structures. 

Better alignment schemes are still required to improve the overall performance of such 

structures. 

Data Transmission 

In anticipation of allocating many sensors with different capabilities and functions 

across the fabric, lots of data can be collected.  Processing of these data will require 

their transmission using wireless links to some central computational centers.  Various 

types of antennas can be used for wireless transmission—for example a patch antenna 

or a slot antenna can be used for low data rate transmission or ultra wide-band 

antennas for high data rates transmission.   

UWB systems are being used increasingly in a variety of applications. 

Fortunately, many advances are being made in the realm of conductive textiles and 

flexible electronics. These textiles can be used as a sensing system as illustrated in 

Chapter IV or used to implement wearable antennas as discussed in Chapter II. 

Combining these two applications is attractive for a number of reasons. First, wearable 

antennas constructed entirely from fabric offer a cost-effective, flexible solution when 

compared to rigid antennas. UWB technology is similarly attractive for body area 

network applications due to the low-power operation and low radiated power inherent in 

its system design. 
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For demonstration, an UWB textile antenna for wearable applications was 

developed and tested in an indoor localization system at the University of Tennessee. A 

monopole antenna was developed using the precision laser cutting capability discussed 

above in a similar manner to the slot and patch antennas presented. To the best of the 

author’s knowledge, applying textile antennas for use in indoor localization systems has 

not yet been implemented in research. Much of the previous research relates UWB and 

textile antennas with body area network applications but not for localization. The 

developed monopole operates from 1 to 15 GHz according to simulation. This design 

complies with the Federal Communications Commission UWB frequency band 

allocation of 3.1–10.6 GHz. Following the development and initial testing of this 

monopole, it was applied to the indoor localization system at UT to ascertain whether 

textile antennas cold be used as a means for localization. 

Monopole Antenna Design 

Many papers have been written on the design of wideband antennas constructed 

from fabrics. Wideband antenna design approaches and those taken by Zhang [60] are 

considered to develop a wideband textile monopole antenna for use in UWB localization 

applications. Figure 68 illustrates this antenna design and the sizing parameters 

associated with the design. The entire antenna is realized on a fabric patch measuring 

60 mm × 70 mm with a total thickness of less than 1 mm for the three layers. With the 

laser precision cutting machine discussed above and the iron-on adhesive, the 

monopole antenna is fabricated as shown in Figure 69. This antenna, due to its fabric  
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Figure 68: Textile monopole dimensions. 

 
 
 

 
Figure 69: Fabricated UWB textile monopole. 

 

 

composition and small size can be easily integrated into clothing of a fire-fighter or a 

soldier, for example. 

The measured return loss for this antenna provides acceptable bandwidth for use 

in the localization experiment. The current localization system functions in a frequency 
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range of 5–9 GHz. As shown in Figure 70, this monopole design has acceptable return 

loss over the range 2–11GHz. This agrees well with the bandwidth of the simulated 

antenna from 1–15 GHz. Figure 71 and Figure 72 compare the radiation patterns of the 

monopole antenna at 3 GHz and 6 GHz. 

 

 

 

  
Figure 70: Simulated and measured monopole return l oss. 
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(a) (b) 

Figure 71: Radiation patterns at 3 GHz. (a) Phi = 0 °, (b) Phi = 90°.  
Red, simulation; blue, measured. 

 
 
 

 
 (a) (b) 

Figure 72: Radiation patterns at 6 GHz. (a) Phi = 0 °, (b) Phi = 90°.  
Red, simulation; blue, measured. 
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Monopole Localization Experiment 

After fabricating and testing the functionality of the monopole design, the antenna 

was applied to an indoor localization system employing this fabric antenna as a part of a 

transmitting tag. The goal of this experiment was to analyze the potential of textile 

antennas for human movement tracking. The localization system discussed by Kuhn 

[61] uses a tag that transmits a UWB pulse with full-width at half-amplitude (FWHA) of 

300 ps and modulated at a center frequency of 8 GHz. The pulse is received by N base 

stations and uses the difference in time of arrival to triangulate the tag position. A 

leading edge algorithm and subsampling is used to recreate the transmitted pulse for 

localization. Using four antennas, we can track the tag in three dimensions; using more 

base stations improves signal-to-noise ratio and provides redundancy in localization 

information. The measurements are verified through comparison to an optical tracking 

system that has an accuracy of 0.3 mm. A simplified block diagram of the localization 

system can be seen in Figure 73. The fidelity of the fabric monopole in producing the 

pulse was first analyzed and compared to the original copper omnidirectional monopole 

printed on RT/Duroid substrate usually used by the system. This original antenna can 

be seen in Figure 74.  
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Figure 73: Indoor localization system block diagram . 

 
 
 
 
 

 
Figure 74: Omnidirectional monopole antenna used in  the 

indoor localization system. 
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Figure 75 shows three received and down converted pulses: that of the original 

tag antenna, the fabric monopole, and the fabric monopole placed near the body. We 

can see the pulses are similar as they have approximately the same width and shape. 

However, the pulse produced by the fabric antenna in free space is relatively lower. This 

amplitude drop is expected due to the relatively high loss of the cordura substrate and 

the moderate conductivity of the conductive fabric. The figure also shows how the pulse 

is affected when placed against the body. The pulse shape remains similar and has 

higher amplitude as a result of the constructive interference from the back reflection of 

the body. The sharpness of the pulse’s leading edge, a critical factor for the localization 

leading edge algorithm, is acceptable for all three cases. 

 

 
Figure 75: Down converted UWB pulse comparison betw een the omnidirectional 

monopole (black dot-dash), the fabric monopole (red  solid), and the fabric 
monopole placed in close proximity to the shoulder (blue dash). 
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This experiment tracked the tag by use of two base stations for one-dimensional 

localization. The tag used the fabric monopole as the transmitting antenna. An optical 

probe was also attached to the tag for use as a reference in comparing the two tracking 

positions. Calibration was performed to account for the offset distance between the 

fabric antenna and the optical probe.  

The experiment performed real-time tracking to compare the optical sensing 

system with our fabric monopole. If the distance from the transmitting tag to base 

station 1 is A and the similar distance to base station 2 is B as shown in Figure 76, 

Figure 77 shows the difference in distance, B − A, versus the time difference of arrival of 

base stations A and B. After performing a calibration between the transmitting textile 

antenna and the optical tracker, the tag was slowly moved so that a comparison 

between localization systems could be performed. The figure shows a total agreement 

of the UWB and optical probe with error less than few centimeters. This error becomes 

more visible as the distance from the base stations increases beyond 5 feet. This can 

be attributed to a diminishing signal-to-noise ratio with increasing distance due to an 

 

 
Figure 76: Simplified diagram of indoor localizatio n experiment. 
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Figure 77: Comparison of optical tracker and fabric  monopole accuracy. 

 

input pulse power well below the FCC mask. Further techniques can be applied to 

further increase this range, including increasing the transmitting power, but still within 

the FCC power mask. Meter distances can be achieved if we allow for less precision. 

These results encourage the use of textile antennas in human movement sensing in 

combat wound detection applications. If appropriate considerations are included, this 

technology could be expanded and usefully applied to locate victims in the wake of a 

natural disaster for example. 

Conductive Vias Implementation 

 This thesis also investigates the ability to implement conductive vias in textiles. 

To maintain the flexibility of the textiles, it is desirable to implement these vias using 
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conductive threads as opposed to introducing eyelets as suggested by Moro et al. [47]. 

These vias can be implemented with a sewing machine, which has the added benefit of 

variable stitch type as well as the stitch width and spacing. These parameters become 

paramount as the capability of textile substrate integrated waveguides are explored. 

The capability of the SIW to function properly is entirely dependent on minimizing the 

spacing between adjacent vias to reduce leakage. The technique presented permits the 

ability to sew multiple lines, thereby reducing leakage by offsetting the rows of vias. 

Confirmation that these textile vias accurately connect the top and bottom layers 

electrically was verified with a digital multi-meter measuring continuity. 

 Figure 78 illustrates a constructed dog-bone slot antenna with the vias included. 

Figure 79 better depicts these vias by zooming into the corner of the dog-bone slot 

antenna. The return loss plot of this antenna is included in Figure 80 followed by the 

radiation pattern in Figure 81 corresponding to the resonant frequency of the antenna at 

2 GHz. As can be seen, the Phi = 90° radiation patt ern squints off the broadside 

direction. The front-to-back ratio for this antenna is decent with a value of approximately 

10 dB. Showing that the inclusion of conductive vias is feasible, this thesis leaves the 

implementation of SIW technology for future publications. 
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Figure 78: Dog-bone slot antenna implementing condu ctive vias with conductive thread. 

 
 
 

 
Figure 79: Conductive vias implemented with two row s of closely stitched conductive thread. 

 



www.manaraa.com

110 
 

 
 

 
Figure 80: Return loss of the fabricated dog-bone s lot antenna. 

 
 
 

 
Figure 81: Radiation patterns of the dog-bone slot antenna. 
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CHAPTER VI: Future Work 

Prior to application of conductive textile technology in various fields, further 

research must still be conducted. Combat wound detection systems must be reliable, 

lightweight, and durable to survive in the harsh environments in which they are active 

and necessary. Steps must be taken to meet these various system requirements. This 

chapter offers suggestions for system development utilizing the technology presented in 

this thesis with the goal of meeting these requirements. 

Distributed Sensor Development 

As shown from the development of the distributed textile sensor presented in 

Chapter IV, the current system has some limitations. For this system to be easily 

applicable to the uniforms of deployed soldiers, the cables leading to the resistance 

probing points must be eliminated. Additionally, the sensing electronics must be 

reduced to an acceptable size, with power concentrations being a primary concern. 

Soldiers cannot be expected to carry additional large batteries to power this system. A 

potential solution to this challenge is to employ a multilayer textile structure. This 

structure could be composed of the sensing textile on one layer with textile traces 

placed on the opposite side. To avoid shorting these layers together, they would be 

spaced by a lightweight, thin dielectric material. As illustrated with the dog-bone slot 

antenna presented in Chapter V, conductive vias can be implemented by sewing 

conductive thread in the desired pattern. These vias can be placed at the probing 

locations to offer electrical connection between the two conductive textile layers. 
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Routing these textile traces to the edge of the fabric and then utilizing a cable bundle to 

connect to the sensing electronics will provide a good alternative to the problem 

presented. 

In addition to being simplified through the reduction of cables, the system must 

also ensure accuracy. This can, in theory, be achieved rather easily. Currently, the 

system utilizes the “one-to-many” technique for resistive sensing. That is to say that one 

point is held constant while the resistance between that point and each other point is 

measured. To achieve redundancy in data collection and therefore confirmation as to 

the location of penetration, a “many-to-many” technique can be implemented. This 

system, created by multiplexing the multiplexers, is a simple hardware alternative for 

offering redundancy.  

A second idea is to utilize the “many-to-many” sensing technique in a more 

consolidated manner. Here, each resistive measurement would only be taken between 

a stationary point and its closest neighbors. Minute changes in resistance should be 

more obvious with this technique. In the current system, the resistance change directly 

next to penetration and the resistance change some distance away from the cut are 

much different. It is the goal of this “magnifying glass” technique to expound on this 

phenomenon to produce a closer look as to the location of penetration within the 

system. Depending on the application, this technique may be too complex. While the 

hardware is no more difficult to implement than the “many-to-many” technique, the data 

processing could be a challenge to accurately and effectively portray the system as 

small cells of resistive changes. 
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Multiple textile sensing layers spaced apart by some distance can also be of 

potential use in this application. Here, information can be gleaned as to the trajectory of 

penetration as well as to the existence of penetration. This knowledge can be coupled 

with effective signal processing to determine the approximate location of impact with the 

body by calculating the angle of arrival of the bullet partnered with the location of 

penetration on the sensing system. This idea is illustrated in Figure 82. By placing one 

layer outside the protective vest shown in Figure 82 and one layer inside, it is even 

possible to determine if a soldier is encountering fire that is not penetrating the 

protective ballistic layer. The key to this application is the easy and inexpensive 

replacement of the distributed sensors if they are compromised. 

 

 

 

 

 

Figure 82: Multilayer distributed fabric sensor. 
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Antenna and Signal Transmission Development 

In addition to the distributed sensor system development discussed above, 

further research must be conducted for antenna and signal transmission. Primarily, 

questions must be answered regarding the necessary range as well as the antenna gain 

requirements and size restraints. Additionally, it must be decided whether to continue 

implementation of the multilayer textile antenna or to explore better opportunities for 

antenna development. Depending on the application, it may be necessary to implement 

antenna arrays to provide better gain for extending range or to reduce the size of the 

antenna while still maintaining specific gain requirements or radiation patterns.  

While the gain and range requirements are application specific, it is possible to 

initially decide whether to continue the implementation of multilayer textile antennas or 

to move towards developing technology that could promote the use of only one textile 

layer. The difficulty in producing multilayer antennas is seen through fabrication. While 

laser cutting capabilities can accurately define the conductive layers, it is difficult to 

place the layers in their exact position during the iron-on process. A potential work-

around to this challenge is to print metal layers on the textiles, similar to the idea of 

printed circuit boards. Applied Nanotech, a small company in Texas, has the ability to 

print on a variety of surfaces through both a screen printing process and an inkjet 

printing process. Each of these options creates tradeoffs with the current multilayer 

approach. Chief among these is the ability to ensure accurate alignment between top 

and bottom layers. Given a fiducial reference point, it is theoretically possible to ensure 



www.manaraa.com

115 
 

 
 

alignment between the top and bottom layers. A comparison between potential antenna 

fabrication methods can be found in Table 4. 

The benefits of utilizing the printing technique come in the form of enhanced 

conductivity. Since the conductor thickness is much smaller than that of the conductive 

textile, a much lower resistivity can be achieved. According to the printing company, the 

textile remains very flexible after printing. A primary concern with this is how far the 

material can flex without severing electrical connections along printed layers. The 

obvious tradeoff to utilizing the printing methods is to sacrifice the maximum size 

capability for increased conductivity. Depending on the application, this sacrifice may be 

acceptable. As this technology becomes more widespread, the size limitations 

associated with the printing process will likely be addressed. If larger sizes could be 

obtained, it may become a valid option for larger system development.  

In addition to antenna development, the use of conductive vias as illustrated by 

the dog-bone slot antenna fabrication brings rise to the capability of implementing 

substrate integrated waveguide (SIW) designs entirely from textile materials. The 

challenge with these designs is again in the fabrication process. While the metal layers 

 

Table 4: Comparison of potential conductive layer c andidates 

Method Conductor Thickness 
(µm) 

Resistivity  
(µΩ-cm)  

Size Constraints  
(in.) 

Conductive Textile 

Inkjet Printing 

Screen Printing 

100 

1 

4 

500 

5 

50 

24 × 12 

8 × 8 

15 × 15 
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are easy to adhere to the dielectric material with only one layer having intricate designs, 

the challenge comes in sewing the vias. Here, the difficulty exists in sewing a straight 

line so that the waveguide maintains the same effective width throughout. Various SIW 

designs have been simulated, including a T-junction power divider, a GCPW-SIW 

transition, and a Y-junction power divider. Simulation results suggest that it is possible 

to create SIW technology using conductive textiles. The fabrication and measurement of 

this technology is left for future work. The base of knowledge produced throughout this 

thesis provides a basis for this work. 

System Development 

Figure 83 illustrates a system concept for combat wound detection which allows 

the textile antennas to communicate in a small cell with a centrally located 

communications soldier. From here, the sensor data transmitted by each soldier in the  

 

 
Figure 83: Combat wound detection system concept. 
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group can be compiled and transmitted over longer distances to headquarters. It is 

expected that this information will allow medical staff to be better prepared to treat 

combat wounds. Additionally, this technology can be implemented in human movement 

tracking scenarios, as presented on a small scale by the indoor localization experiment 

with the textile monopole antenna. With proper equipment, the range of this system can 

be ideally expanded to a range between 10 and 100 meters. If this range could be 

achieved with localization accuracy of about a meter, the technology could be applied to 

localization in harsh environments. A potential application for this scenario would be the 

successful localization and tracking of emergency response firefighters as they work 

their way through a burning building in search of survivors. The base system would 

allow the crew members outside of harm’s way to keep tabs on the safety of each of the 

firefighter crew members. 

System development in each of these cases is not trivial. Each system has its 

own requirements that make it a challenging task. The emergency response application, 

for example, requires that accurate tracking be performed from a safe location. This 

means that the signal must accurately propagate and return through a noisy, 

unpredictable environment. In the case of combat wound detection, multilayer textile 

sensing devices must be easily and accurately developed. There is potential that 

printing techniques as discussed in this chapter could be used to eliminate the need for 

multiple textile layers. However, this is dependent on the ability to introduce conductive 

vias after the printing is completed so that the two sides can be electrically connected in 

a desired location.  
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CHAPTER VII: Conclusion 

The research documented in this thesis has successfully demonstrated the 

capability of conductive textiles in both remote sensing and microwave applications. 

Novel approaches were taken to improve the current level of knowledge in each of 

these applications. The distributed textile sensor has the advantage of being a low-cost 

option for many applications including combat wound detection. The discrete resistive 

grid measurement approach allows the collected data to accurately predict the presence 

of cuts and penetrations within the fabric. This prediction is achieved through visual 

analysis of the results gathered. The visualization technique also provides estimation as 

to the location of penetration. Location information, in conjunction with the incorporation 

of sensors to measure vital signs, can be utilized to predict the severity of penetrations 

within the fabric.  Simulation has shown that the size of the cut is directly correlated to 

the density of the probing locations. From probing 32 locations in experiments, a 

limitation on the minimum detectable cut size was evident. However, when cuts 

exceeded this size, the location of the cut as well as the cut’s approximate length was 

evident through visual analysis.  

The research also suggested means for improving accuracy through periodic 

calibration as a result of the drift in textile point-to-point resistance over time. The 

frequency of calibration is described as application specific as a result of allowing 

resistive variation in sensing. This proof-of-concept remote sensing system compares 

well with the simulation profiles created in MATLAB to model the variation in resistance 

of a discrete resistive grid. These simulation models also permit the introduction of cuts 
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and tears within the discrete grid. A comparison between simulation and experimental 

results also suggests good correlation. 

In addition to the remote sensing capabilities for the detection of penetration and 

cuts in conductive textiles as demonstrated in this thesis, this research also built upon 

the use of conductive textiles for flexible antenna design as a component of 

communication systems. The antennas designed by use of these textiles were 

accurately defined with a laser cutting system, an approach not yet presented by other 

researchers. Generally, these antennas have been fabricated manually by use of a 

sharp blade followed by an iron-on process to adhere the textile layers together. This 

research, instead, precedes the iron-on adhesion process with an accurate conductive 

layer definition using an Epilog Zing 24 laser cutter system. The development of the 

dog-bone slot antenna presented in Chapter V promotes the investigation of substrate 

integrated waveguide technology in textiles. With the improved manner for via 

implementation, as opposed to inserting metal eyelets in the fabric, substrate integrated 

waveguide technology can accurately be developed. 

Significant potential exists for the further development of these antennas and 

communication system components through metal printing processes as well as 

through application specific designs such as ultra-wideband tracking systems. Chapter 

VI indicates numerous opportunities for future research tailored to system development 

for deployed soldier localization and combat wound detection. In addition to fabrication 

advancements, these opportunities will drive the future development of this technology. 

In addition to antenna development, textiles can be used as a medium for 
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communication system component integration. The potential for this can also be 

explored. 

Some technical challenges were faced during the completion of this research. 

The successful navigation of these challenges allowed for novel developments to be 

made in the areas previously discussed in this chapter. Some of the difficulties 

encountered included the ability to sense large textile samples and the visualization of 

the resistance grid results. The implementation of electrodes to sample the discrete 

resistance locations allowed for large, configurable textile samples to be accurately 

sensed. The analysis and inclusion of the second order discrete Laplacian mask 

provided an effective means for visualization of the resistance grid results. Without this 

mask, it proved difficult to accurately sense the location of resistance perturbations and 

potential textile penetrations. Challenges were also faced in the development of textile 

antennas. Finding an effective means for fabric layer adhesion was a challenge. Initially, 

a spray-on adhesive was used which did not allow for ample time to accurately align the 

top and bottom textile layers. As soon as the layers made contact with one another, the 

position of the layer was final. Using the iron-on fabric adhesive proved to be a much 

more effective technique to accurately align the top and bottom textile layers before they 

were adhered to the dielectric material. The development of large microstrip feeding 

networks also proved difficult initially. The thin, complex fabric microstrip lines would 

easily tear during the adhesion process or from handling. To solve this issue, support 

bars were included in the design to provide extra durability during layer placement. 

These bars could be easily cut apart after the layers were placed on the dielectric fabric. 
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Solving the various technical challenges encountered during this research led to 

the completion of promising research for sensing and localization systems and in 

particular for combat wound detection. Investigation as to the uses of conductive textiles 

in combat wound detection systems provided a number of promising results and 

conclusions. The inexpensive nature and effective sensing ability of conductive textiles 

make them an attractive option for incorporation into existing protective vests for military 

personnel. While advances in metallic printing may prove to be a future solution for 

textile sensor and antenna development, conductive textiles are currently at the 

forefront. The accuracy and effectiveness of metallic printing must still be investigated 

before it can be employed in combat wound detection systems. Table 5 summarizes the 

contributions of this research. 

 

Table 5: List of Contributions with a Brief Descrip tion 

Contribution Description 
 

1. Bullet, cuts, impact and penetration 
through wounded soldier body 
localization 

 

 
Used MATLAB to model conductive 
textiles as a large resistor network. 
Then models were used to predict     
the result of penetrations of a bullet 
and cuts within the textile. 
 

 
2. Developed and validated a novel 

distributed Resistance Sensing 
Network 
 

 
A large area sensing network based on 
implementing a distributed resistance 
sensing network was developed; 
verified and validated using MATLAB 
simulation models with LabView Data 
Acquisition Program 
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Table 5: Continued. 

Contribution Description 
 

3. Developed a very adaptive 
reconfigurable, Large-Scale 
Penetration Detection Network 
 

 
Implemented a unique adaptive 
sensing solution using electrodes to 
provide reconfigurable resistance 
sensing capabilities that would allow 
zooming capabilities in certain region. 
 

 
4. Enhanced the sensing accuracy 

using Redundant Sensing – 
“Magnification” and differential 
resistance grid state change 
 

 
Developed models to magnify the 
effect of localized changes in 
resistance by measuring resistance 
between adjacent nodes for the entire 
resistance grid thus avoiding aging 
effects and false detection. 
 

 
5. Developed relatively low cost 

fabrication technique combining 
laser-definition with iron-on process 
to realize metalized textile patterns 
 

 
Utilized Epilog Zing 24 Laser Cutting 
System to accurately define textile 
antennas instead of manually defining 
with a sharp knife.  Simple iron-on 
methods were implemented for precise 
metalized patterns definition and 
allocation on the fabrics. 
 

 
6. Developed a practical method for 

implementing conductive vias in 
textiles 
 

 
Showed the potential for conductive via 
implementation using a sewing 
machine and conductive thread. The 
sewing machine allows for variation in 
stitch type, stitch width and stitch 
length to create various types of 
conductive vias. 
 

 
7. Proposed a simple, low profile, low 

cost, accurate Integrated Textile 
Systems for combat wound 
detection 

 
Provided a basis for integrated systems 
using textiles by discussing the 
development of sensing technology 
coupled with communication system 
development. 
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Appendix A: Conductive Textiles on the Market   

   
Table 6: Conductive Textiles Available from LessEMF .com 
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Table 6: Continued. 
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Table 7: Conductive Textiles Available from Marktek , Inc. 

  

 

 

Table 8: Conductive Textiles Available from Metal T extiles Corporation 
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Table 9: Conductive Textiles Available from Swift T extile Metalizing, LLC. 
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Table 9: Continued. 
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Appendix B: Conductive Textile Simulation Model 

MATLAB Code 

TopLevelResistanceMatrix.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Simulate Resistance Matrix Model of Conductive Fab ric  
% 
% This is the top level of the resistance matrix si mulation model.  
% Using this model, you can choose the type of cut,  size of  
% resistance matrix, and whether to include measure ment results.  
% 
%The function inputs are as defined:  
%   x => number of side data points in the x dimens ion of  
%       grid  
%   y => number of side data points in the y dimens ion of  
%       grid  
%   cut => either a sheet (void), vertical, diagona l or point  
%       cut. 
%   meas => choice to include measurement data to p lot  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
clear all ; close all ; clc;  
 
% Select the resistance grid size.  
x = 16;  
y = 32;  
  
% Choose cut type, if any.  
%   None -> 'void'                Point -> 'point'  
%   Vertical -> 'vertical'        Diagonal -> 'diag onal'  
cut = 'vertical' ;  
  
% Are you validating with measurements?  
%   Yes -> '1'      No -> '0'  
meas = '0' ;  
  
% Create Simulated Resistance Matrix  
[R, V, Vdrop] = Simulate_Resistance_Matrix (x, y, c ut);  
R_error = R; % Hold value for error comparison.  
R_norm = R./max(max(R)); % Normalize matrix to maximum value.  
  
R_lap = del2(R_norm); % Perform 2D Discrete Laplacian.  
  
% Create Measured Resistance Matrix  
if  meas == '1'  
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    Rmeas = 
Read_Labview_Data(64, 'C:\Users\s49\Documents\MATLAB\ResistanceMatrixMode l\Mod
ifiedScripts\LabViewData\64PortData_' , '.lvm' ,11);  
    Rmeas_norm = Rmeas./max(max(Rmeas));  
  
    Rmeas_lap = del2(Rmeas_norm);  
end  
  
figure;  
surf(R_norm);  
title([ 'Simulated Sheet' , char(10), 'Cut: ' , cut], 'FontSize' ,18);  
xlabel( 'X Grid Location' , 'FontSize' ,12);  
ylabel( 'Y Grid Location' , 'FontSize' ,12);  
axis([1 size(R,2)  1 size(R,1)]); axis ij ;  
colorbar; colormap jet ;  
  
figure;  
surf(abs(R_lap));  
title([ 'Simulated Sheet Laplacian' , char(10), 'Cut: ' , cut], 'FontSize' ,18);  
xlabel( 'X Grid Location' , 'FontSize' ,12);  
ylabel( 'Y Grid Location' , 'FontSize' ,12);  
axis([1 size(R,2)  1 size(R,1)]); axis ij ;  
colorbar; colormap jet ;  
  
if  meas == '1'  
figure;  
surf(Rmeas_norm);  
title([ 'Simulated Sheet' , char(10), 'Cut: ' , cut], 'FontSize' ,18);  
xlabel( 'X Grid Location' , 'FontSize' ,12);  
ylabel( 'Y Grid Location' , 'FontSize' ,12);  
axis([1 size(Rmeas,1)  1 size(Rmeas,2)]); axis ij ;  
colorbar; colormap jet ;  
  
figure;  
surf(abs(Rmeas_lap));  
title([ 'Simulated Sheet Laplacian' , char(10), 'Cut: ' , cut], 'FontSize' ,18);  
xlabel( 'X Grid Location' , 'FontSize' ,12);  
ylabel( 'Y Grid Location' , 'FontSize' ,12);  
axis([1 size(Rmeas,1)  1 size(Rmeas,2)]); axis ij ;  
colorbar; colormap jet ;   
end  
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Simulated_Resistance_Matrix.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Simulate Resistance Matrix Model of Conductive Fab ric  
% 
%This code implements the resistive matrix techniqu e to  
%simulate a square sheet of fabric.  The user can d efine a cut  
%type to see the impact in resistance tomography th at results.   
% 
%The function inputs are as defined:  
%   x => number of side data points in the x dimens ion of  
%       grid  
%   y => number of side data points in the y dimens ion of  
%       grid  
%   cut => either a sheet (void), vertical, diagona l or point  
%       cut. 
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function  [R,V,Vdrop] = Simulate_Resistance_Matrix(x,y,Ctype )  
n = x*y;  
  
scale = 1;  
  
% Set edge matrices  
  
[topedge,leftedge,rightedge,bottomedge] = edgeMatri ces(n,y);  
  
% Calls function to make incidence matrix  
  
[A] = makeIncidence(n,y,x,topedge,leftedge,rightedg e,bottomedge);  
  
% Select node connections to remove  
if  strcmp(Ctype, 'vertical' ) == 1  
   remove_node = [ceil(x/2)+1:x:floor(x/2)*x]; %vertical cut  
elseif  strcmp(Ctype, 'horizontal' ) == 1  
   remove_node = [floor(x/2)*x+1:floor(x/2)*x+floor (x/2)+1]; %horizontal cut  
elseif  strcmp(Ctype, 'diagonal' ) == 1  
   remove_node = [x:x-1:floor(x/2)*x+floor(x/2)+1];  %diagonal cut  
elseif  strcmp(Ctype, 'point' ) == 1  
   remove_node = [54];  
%else Ctype is void  
end  
  
% Remove Connections in Incidence Matrix  
if  strcmp(Ctype, 'void' ) == 0  
    for  i = 1:length(remove_node)  
        if  strcmp(Ctype, 'vertical' ) == 1  
            %Vertical Cut  
            A(remove_node(i),remove_node(i)-1) = 0;  
            A(remove_node(i)-1,remove_node(i)) = 0;  
        elseif  strcmp(Ctype, 'horizontal' ) == 1  
            %Horizontal Cut  
             A(remove_node(i),remove_node(i)-y) = 0 ;  
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             A(remove_node(i)-y,remove_node(i)) = 0 ;  
        elseif  strcmp(Ctype, 'diagonal' ) == 1  
            %Diagonal Cut  
            if  i ==1  
                A(remove_node(i),remove_node(i)-1) = 0;  
                A(remove_node(i)-1,remove_node(i)) = 0;  
            else  
                A(remove_node(i),remove_node(i)-1) = 0;  
                A(remove_node(i)-1,remove_node(i)) = 0;  
                A(remove_node(i),remove_node(i)-y) = 0;  
                A(remove_node(i)-y,remove_node(i)) = 0;  
            end  
        else  %Point remove  
            A(remove_node(i),remove_node(i)-1) = 0;  
            A(remove_node(i)-1,remove_node(i)) = 0;  
        end    
    end  
end  
% Build Resistance Matrix  
[R,j,V,Vdrop] = buildResistanceVector(A,scale);  
V = V;  
R = reshape(R,x,y);  
R = R'; %correct the orientation of the matrices to match n otation  
end  
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edgeMatrices.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%Find the Edge Vectors  
% 
%This code uses the side dimension and number of in ternal data  
%points to assign vectors containing the top, left,  right, and bottom  
%node positions.  
% 
%The function inputs are defined as follows:  
%   n => total number of internal matrix points  
%   x => number of side data points in the x dimens ion of  
%       grid  
% 
%The function outputs are defined as follows:  
%   topedge => vector of top node positions  
%   bottomedge => vector of bottom node positions  
%   leftedge => vector of left node positions  
%   rightedge => vector of right node positions  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function  [topedge,leftedge,rightedge,bottomedge] = edgeMatr ices(n,x)  
  
    topedge = zeros(1,n); leftedge = zeros(1,n);  
    rightedge = zeros(1,n); bottomedge = zeros(1,n) ;  
     
    j = 1;  
    for  i = 2:1:n/x-1  
        topedge(j) = i;  
        j = j + 1;  
    end  
    topedge(:,j:end) = []; j = 1;  
     
    for  i = n/x+1:n/x:(x-2)*n/x+1  
        leftedge(j) = i;  
        j = j + 1;  
    end  
    leftedge(:,j:end) = []; j = 1;  
     
    for  i = 2*n/x:n/x:(x-1)*n/x  
        rightedge(j) = i;  
        j = j + 1;  
    end  
    rightedge(:,j:end) = []; j = 1;  
     
    for  i = (x-1)*n/x+2:1:n-1  
        bottomedge(j) = i;  
        j = j + 1;  
    end  
    bottomedge(:,j:end) = [];  
     
    return  
end  
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makeIncidence.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Creating the Incidence Matrix  
% 
%This code implements the mathematics and patern re cognition  
%needed to develop an incidence matrix outlining a grid of  
%resistors.  
% 
%The function inputs are defined as follows:  
%   n => total number of internal matrix points  
%   x => number of side data points in the x dimens ion of  
%       grid  
%   y => number of side data points in the y dimens ion of  
%       grid  
%   topedge => vector of top node positions  
%   bottomedge => vector of bottom node positions  
%   leftedge => vector of left node positions  
%   rightedge => vector of right node positions  
% 
%The function outputs are defined as follows:  
%   A => incidence matrix of the grid  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function  [A] = makeIncidence(n,x,y,topedge,leftedge,righted ge,bottomedge)  
    A = zeros(n,n);     
    for  i = 1:n     
        % Corners  
        if  i == 1  
            A(i,2) = 1;  
            A(i,n/x+1) = 1;  
        elseif  i == n/x  
            A(i,y-1) = 1;  
            A(i,2*n/x) = 1;  
        elseif  i == (x-1)*n/x + 1  
            A(i,(x-1)*n/x + 2) = 1;  
            A(i,(x-2)*n/x + 1) = 1;  
        elseif  i == n  
            A(i,(x-1)*n/x) = 1;  
            A(i,n-1) = 1;  
        % Edges     
        elseif  intersect(i,topedge)  % Top Edge  
            A(i,i-1) = 1;  
            A(i,i+1) = 1;  
            A(i,i+n/x) = 1;  
        elseif  intersect(i,leftedge)  % Left Edge  
            A(i,i+1) = 1;  
            A(i,i-n/x) = 1;  
            A(i,i+n/x) = 1;  
        elseif  intersect(i,rightedge)  % Right Edge  
            A(i,i-1) = 1;  
            A(i,i-n/x) = 1;  
            A(i,i+n/x) = 1;         
        elseif  intersect(i,bottomedge)  % Bottom Edge  
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            A(i,i-1) = 1;  
            A(i,i+1) = 1;  
            A(i,i-n/x) = 1;  
        % Center points  
        else  
            A(i,i-1) = 1;  
            A(i,i+1) = 1;         
            A(i,i-n/x) = 1;  
            A(i,i+n/x) = 1;  
        end  
    end  
return  
end  
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buildResistanceVector.m 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
% Build Resistance Vector  
% 
% This uses code similar to that supplied by R. Gro thmann to  
% calculate the point to point resistance matrix by  implementing  
% the predefined incidence matrix of the grid.   
% 
%The function inputs are defined as follows:  
%   A => the incidence matrix of the network grid  
%   scale => scaling factor for the interconnecting  resistance  
%       value in the grid  
% 
%The function outputs are defined as follows:  
%   R => the resistance vector corresponding to eve ry node  
%       point  
%   j => number of nodes in the matrix 
%   V => the voltage at each node in the grid 
%   V => the voltage drop between the origin node a nd the  
%       measurement node.  
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
function  [R,j,V,Vdrop] = buildResistanceVector(A,scale)  
    B = A;  
    C = -sum(B);  
    n = size(A); n = n(1);  
    for  i = 1:n  
        B(i,i) = C(i);  
    end  
  
    B_loop = B;  
    R = zeros(1,n);  
    I = R;  
    Vout = zeros(n,n);  
    Voutdrop = Vout;  
    nodes = 1:1:n;  
     
  
    % Builds Resistance Matrix  
    port1 = 1; R(1) = 0;  
    B_loop(port1,:) = 0; B_loop(port1,port1) = 1;  
    Vdrop = zeros(n,1);  
    Vdrop(port1) = 1; %1V drop between terminals of Req;  
    B = B_loop;   
     
    for  j = 1:length(nodes)  
       
        port2 = nodes(j);  
        B_loop(port2,:) = 0; B_loop(port2,port2) = 1;  
        V = pinv(B_loop)*Vdrop; % Returns least squares solution  
  
        I(j) = sum(A(port1,:)) * V(port1) - dot(A(p ort1,:),V);  
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        I(j) = I(j)/scale;  
  
        R(j) = (V(port1)-V(port2))/I(j);  
        Voutdrop(j,1:n) = Vdrop;  
        Vout(j,1:n) = V;  
        %Need to set B back to original matrix.  
        B_loop = B;  
    end  
    V = Vout;  
    Vdrop = Voutdrop;  
return  
end  
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